e

TECHNICAL REPORT 70-133 SEPTEMBER 1970
JPL CONTRACT NO. ©52695
NGL-21=002=008

FORMAL
A FORMULA MANTPULATION LANGUAGE
BY

CHARLES Ko MESZTENYI

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

TECHNICAL REPORT 70-133 SEPTEMBER 1970
JPL CONTRACT NO. 952695
NGL=21=002-008

FORMAL
A FORMULA MANIPULATION LANGUAGE
BY

CHARLES K, MESZTENYI

THIS RESEARCH WAS SUPPORTED BY CONTRACT 952695 FROM THE JET
PROPULSION LABORATORY OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY
AND BY GRANT NGL=21-002~008 FROM THE NATIONAL AERONAUTICS AND
SPACE ADMIMISTRATIOM TO THF COMPUTER SCIENCE CENTER OF THE
UNIVERSITY OF MARYLAND.

-2

ABSTRACT

THE FORMAL SYSTEM IS AN EXTENSION OF FORTRAN V. WHICH
PROVIDES THE USER WITH THE CAPABILITY OF PERFORMING SYMBOLIC
ALGEBRAIC MANIPULATION. IN THIS SYSTEM., THE VALUE OF A VARIABLE
CAN BE A SYMBOLIC ALGEBRAIC EXPRESSION, ARITHMETIC OPERATIONS:
DIFFERENTIATION, SPECIAL OPERATIONS AND SIMPLIFICATION OF SYMBOLIC
ALGEBRAIC EXPRESSIONS ARE ALL PROVIDED By THE SYSTEM. THE INTERAC=-
TIVE FORMAL SYSTEM IS A SUBSET OF THE FORMAL SYSTEM WHICH IS
INDEPENDENT OF FORTRAN V, THIS SYSTEM CAN BE USED FOR SYMBOLIC
ALGEBRAIC MANIPULATION IN AN INTERACTIVE ENVIRONMENT SUCH AS
TELETYPE.

THE SYSTEM IS IMPLEMENTED FOR THE UNIVAC 1108, AND ITS DE=-
TAILED TECHNICAL DOCUMENTATION IS CONTAINED IN TECHNICAL REPORT
T0=134,

@ ® L) &

Ol PO e I

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION ‘

ACKNOWLEDGEMENT

GENERAL SPECIFICATIONS

30le CONTROL CARD AND CARD FORMAT
3.2 FORMAL STATEMFNTS

3.2.1. F=CONSTANTS

35262@ F“VARIABLES

3¢203 F=EXPRESSIONS

3.2.0, MATHEMATICAL FUNCTIONS
3.2:5, FORMAL SPECTAL FUNCTIONS
3¢2:60 DIFFFRENTIAL FUNCTION
3.2:7s DEFINED FUNCTIONS

3.2.86 UNDEF INED FUNCTIONS
36209 ASSIGN STATEMENT

3,2:10, 1/0 STATFMENTS

32611, OPTION STATEMENT

3.2.12 FRASE STATEMENT

3:2.,13 DUMP STATEMENT

32614, ROLOUT STATEMENT

3.2.15, SAVE AND RESET STATEMENTS
3.3, FORTRAN=VALUED FUNCTIONS

3.0, FORMAL VARIABLES AS SUBPROGRAM ARGUMENTS
3¢5, SUMMARY OF RESTRICTIONS,
EXAMPLES OF THE USE OF THE FORMAL SYSTEM
ol TAYLOR EXPANSION

o2, FACTORING

INTERACTIVE FORMAL SYSTEM

EXAMPLES OF THE INTERACTIVE FORMAL SYSTEM
Gele EXAMPLE 1

EeZe EXAMPLE

Gl EXAMPLE 3

ERROR MESSAGES

SYNTAY OF FORMAL STATEMENTS

Bei.l, FORMAL CONSTANTS AND VARIABLES.
Boelol2e FORMAL EXPRESSIONS,

B.1.3, FORMAL FUNCTIONAL EXPRESSIONS,
Belols FORMAL ASSIGN STATEMENT.

81,5, 1/0 STATFMENTS.

Bslstoe OPTION STATEMENT

BeisTe ERASE STATEMENT,

BeloBs DUMP STATEMENT,

8.1:.9. ROLOUT, SAVE AND RESET STATEMENTS.
8 V FORMAL STATEMENTS.

ABelolle FORTRAN VALUED FUNCTIONS,

INTERNAL REPRESENTATION OF EXPRESSIONS

9.l TRANSFORMING MINUS AND DIVIDE OPERATORS
Fe2e FXPRESSTIONS In PREFIX NOTATION

ul})p
e e

|c;4un;u|»uuu
EFEOOE L LN

AR
™
[oalN e RS20

ooy
i
Ol

IR

w'm’énc;o??mmmmm
NN EEEWNE

§

{

i

\?\O
et o

10,

9.3, ORDERING

Gelhe DEFINITION OF FORMAL FUNCTIONS

Gelholo NUMe DENOM

9e.le2, CODEM

Gelieds EXPON, BASE

Qeliolis COEFF

9.5, SIMPLIFICATIONS,

9561 AUTOMATIC SIMPLIFICATION,

9e5.2, OPTION CONTROLLED SIMPLIFICATION,
APPENDIX A

¢
™

¢ 8 8

\O\D\D\O\?\D\O\Qxﬂ
NN EEFEN

1=1

FORMAL IS A PROGRAMMING SYSTEM WHICH IS5 AN EXTENSION OF FOR=-
TRAN. IT CONSISTS OF A LANGUAGE, A PREPROCESSCORs THE FORTRAN
COMPILER ITSELF, AND ORJECT TIME SUBROUTINES. THE PURPOSE OF THE
SYSTEM IS TO PROVIDE A CAPABILITY FOR PERFORMING SYMBOLIC ALGE=-
BRAIC MANIPULATIONS IN ADDITION TO THE NUMERICAL CALCULATION
CAPABILITY OF FORTRAN. THE SYSTEM IS IMPLEMENTED FOR THE UNIVAC
1108 AS AN EXTENSION OF FORTRAN V., THE DEVELOPMENT OF THE FORMAL
SYSTEM WAS INSPIRED BY IBM®S FORMAC SYSTEMs WHICH IS AVAILABLE FOR
IBM 7090/94 AND 360.

THE {LANGUAGE OF FORMALs AS AN EXTENSION OF FORTRAN, IS COMPOSED
OF STATEMENTS., A STATEMENT CAN BE EITHER A NORMAL FORTRAN STATE-
MENT OR A FORMAL STATEMENT. ABBREVIATED HEREIN AS *F=STATEMENT?®.
OUR AIM IS YO DEFINE THE FORMAT {(OR SYNTAX) OF THE F=STATEMENTS
DESCRIPTIVELY BY USING SYNTACTICAL RULFES SIMILAR TO FORTRAN STATE=-
MENMTS WHENEVER THEIR SEMANTICS ARE SIMILAR: E.G.e¢ THE FORMAL
ALSIGNMENT STATEMENT DIFFERS FROM TITS FORTRAN COUNTERPART ONLY IN
THAT IT IS ENCLOSED IN APOSTROPHES, THE INTERFACE BETWEEN FORMAL
AND FORTRAN STATEMENTS IS PROVIDED BY THE USE OF FORTRAN NUMERICAL
EXPRESSIONS WITH SoPECIAL FORMATING IN FORMAL STATEMENTS: AND BY
THE OPERATION OF FORTRAN VALUFED FUNCTIONS ON FORMAL EYPRESSIONS.

THIS REPORT IS DESIGNED 70 G6IVE A COMPLETE DESCRIPTION OF THE
FORMAL SYSTEM AS IT IS IMPLEMENTED FOR THE UNIVAC 1108. IT IS
ASSUMED THAT THE READER 1S FAMILTAR WITH FORTRAN, THEREFQORE NO
ATTEMPT 16 MADE 7o DESCRIBE ANY FORTRAN FEATURES, CHAPTER 3 PROVI-
NES THE GENERAL SPECIFICATIONS OF THE FXTENDED LANGUAGE AND IS
DESIGNED AS A USERTY MANUAL . CHAPTER 4 CONTAINS EXAMPLES FOR THE
EXTENDED LANGUAGE L ARPTER 8 DESCRIBES THE INTERACTIVE FORMAL
SYSTEM: WITH CHARTER & CONTAINING EXAMPLES FOR THE USE OF THIS
SYSTEM, CHAPYER 7 LIC > THE ERROR MESSAGES PRINTED BY THE SYSTEM.
CHAPTER 8 GIVES THE SYNTACTIC DEFIMITION OF THE FORMAL STATEMENTS,
CHABRTER 9 DFSCRIBES THE INTERNAL STRUCTURE OF THE SYMBOLIC EXPRES=
STONS: AND THROUGH THIS DESCRIPTION,; GIVES A PRECISE DEFINITIOMN OF
THE SPECIAL FORMULA MANIPULATING FUNCTIONS = SUCH AS THE
NUMERATOR/DENOMINATOR OF AN EXPRESSION: ETC,

NOTE:

T%F INTERACTIVE FORMAL SYSTEM CONSISTS OF ONLY FORMAL STATEMEM=
TS, THUS, IT 1S5 NOT AN EXTENSION OF FORTRAN, THIS SYSTEM 1S IMPLE-
MENTED BY THE U“” OF THE ORJECT TIME SUBROUTINES USED RY THE
EXTENDED FORMAL SYSTEM.

2 ACKNOWLEDGEMENT

THE AUTHOR OF THIS REPOPT GRATEFULLY ACKNOWLEDGE THE CONTRI-
BUTIONS OF HIS COLLEAGES ¢

MR, HANS BREITENLOHNER ANALYZED AND WROTE THE PREPROCESSOR FOR
THE FORMAL SYSTEM AND HELPED IN MANY OTHER PARTS OF THE PROJECT
WHICH WOULD BE T00 NUMEROUS TO LIST.

MR, ROBERT NUNN AND MR, JOSEPH YEH HELPED THE AUTHOR TO DEVELOP
THE OBJECT TIME ROUTINES AND THE DOCUMENTATION. PROOF READING WAS
PROVIDED BY MISS GAIL VAN METER.

LAST, BUT NOT LEAST» THE AUTHOR IS VERY GRATEFUL TO MR. JOHN
MENARDs ASSOC, DIR,¢: WHOSE ENCOURAGEMENT AND ADMINISTRATICE HELP
MADE IT POSSIBLE TO FINISH THE PROJECT IN A RELATIVELY SHORT TIME,

3=1

THIS CHAPTER CONTAINS THE INFORMATION NECESSARY FOR THE USER OF
THE FORMAL SYSTEM, IT IS SUPPLEMENTED WITH EXAMPLES IN CHAPTER 4
AND WITH A LIST OF THE ERROR MESSAGES IN CHAPTER 7, IN SOME CRITI-
CAL CASES, THE USER MAY WANT TO CONSULT THE MORE PRECISE DEFINI=-
TIONS IN CHAPTERS 8 AND 9,

3¢l CONTROL CARD AND CArRD FORMAT

A FORMAL PROGRAM MAY CONSIST OF SEVERAL SUBPROGRAMS, EACH SUB-
PROGRAM MUST START WITH A CONTROL CARD, WHEN A SUBPROGRAM DOES NOT
CONTAIN ANY FORMAL STATEMENTS, ITS CONTROL CARD CORRESPONDS TO THE
LANGUAGE IN WHICH THE SUBPROGRAM WAS WRITTEN. E.G, A FORTRAN SUB-=
PROGRAM WITHOUT FORMAL STATEMENTS HAS A CONTROL CARD AS FOLLOWS:

PFOR, <OPTIONS> {SPECIFICATIONS>

(AS DESCRIBED IN THE EXEC 8 MANUAL). A FORTRAN SUBPROGRAM CON=
TAINING FORMAL STATEMEMTS MUST HAVE THE CONTROL CARD AS BELOW:

RFORMAL*LIB.FORMAL » <OPTIONS> <SPECIFICATIONS>

THE OPTIONS USED ON A FORMAL PROCESSOR CALL CARD ARE LISTED
BELOW.

B DO NOT AUTOMATICALLY COMPILE THE GENERATED SYMBOLIC ELE-
MENT .

I INPUT A NEW . 'OGRAM FROM CARDS,

L PRODUCES A LISTING OF THE SOURCE CODE AND THE GENERATED

SOURCE CODE,

PRODUCES NO LISTING.

PRODUCES A LISTING OF THE ORIGINAL SOURCE CODE ONLY.
UPDATE THE SOURCE INPUT ELEMENT.

LIST SOURCE MODIFICATION CARDS WITH SOURCE PROGRAM LI-
STING,

ZECnNZ

THE SPECIFICATION FIELDS MUST BE WRITTEN IN ELEMENT NOTATION
(SEE PRM 5.6.1).

IF THE *1¢ OPTION IS PRESENTe SPEC 1 SPECIFIES THE NAME OF THE
SYMBOLIC ELEMENT 70 BE GENFRATED FROM THE INPUT CARDS (FOR POS=
SIBLE LATER UPDATING)., IF SPEC 1 IS NOT GIVENs, THE SOURCE IMAGES
W

o

= U

1

£

It NOY BE SAVED, IF SPEC 2 IS NOT GIVEN: SPEC 1 WILL BE USED
R ITe

3=

IF THE *1¢ OPTION IS ABSENT, SPEC § SPECIFIES THE SYMBOLIC
ELEMENT T0 BE USED FOR SOURCE INPUT, SPEC 3 SPECIFIES AN UPDATED
SYMBOLIC ELEMENT 70 BE GENERATED BY APPLYING THE CORRECTIONS (SEE
PRM 5.6,3) TO SPEC 1. IN THIS CASE SPEC 2 MUST BE SPECIFIED.

SPEC 2 ALWAYS DENOTES THE NAME OF A SYMBOLIC ELEMENT WITH THE
TRANSLATED IMAGES, WHICH WiILL BE GENERATED BY THE PREPROCESSOR.
IF THE *B*' OPTION IS NOT SPECIFIED, THE PREPROCESSOR WILL

DYNAMICALLY ADD THE STATEMENTS @

PRALPH.FS <SPEC 2>9s<SPEC 4>
REOF

IF THE <SPEC 4> IS NOT GIVEN, THE RALPH COMPILER WILL AUTOMATICAL=-
LY USE <SPEC 2> FOR THE RELOCATABLE OUTPUT FIELD.

IF THE *B* OPTION IS SETe THE USER HAS TO COMPILE THE GENERATED
SYMBOLIC ELEMENT.

BEFORE THE EXECUTION, THE PROGRAMS WILL HAVE TO BE COLLECTED
USING THE FOLLOWING SEQUENCE

PEMAP
LIB FORMAL %L IB.
PXQT

DATA CARDsS

&

THE CARD FORMATS OF FORMAL STATEMENTS ARE ESSENTIALLY THE SAME
AS THOSE OF THE FORTRAN STATEMENTS. COLUMNS 1-5 ARE RESERVED FOR
STATEMENT NUMBER» COLUMN 6 IS FOR CONTINUATION, THE STATEMENT MUST
APPEAR BETWEEN COLUMNS 7 AND 72, AND COLUMNS 73-80 MAY CONTAIN
IDENTIFICATION (SEQUOMCE NUMBERING) . BLANK COLUMNS CAN BE FREELY
INTERSPERSED IN THE STATEMENT,

3020 FORMAL STATEMENTS

A FORMAL STATEMENT, OR F=STATEMENT, IS EITHER LABELED OR UNLA=
BELED. THE LABEL I5 A STATEMENT NUMBER SIMILAR TO THAT OF A
FORTRAN STATEMENT, SINCE THERE ARE NO NON-EXECUTABLE FORMAL
STATEMENTSe THE FORTRAN STATEMENTS. DO, *GO TO', MAY REFER TO
THE STATEMENT NUMBER OF AN F=STATEMENT IN THE PROPER FORTRAN
CONTEXT.

F=STATEMENTS ARE STINGUISHED FROM FORTRAN STATEMENTJ IN THAT
?Hﬁf% FIRST AND @fﬁ? HARACTERS ARE APOSTROPHES: AND MO APOSTROPHE
MAY APPEAR INSIDE TH€ %?fTFMQN?Q@ THERE ARE 6 TYPES OF
o %TQEFWiN?Qi F=ASSIGN, F<READs F=WRITE, F=0PTION, F-ERASE AND

B3

F=DUMP, THE F=ASSIGN STATEMENT ASSIGNS A VALUE: A SYMBOLIC ALGE-
BRAIC EXPRESSIONs TO A FORMAL VARIABLE, THE F=READ AND F=WRITE
STATEMENTS PROVIDE SYMBOLIC EXPRESSIONS 7O BE READ FROM CARDS AND
WRITTEN ON A FORTRAN BCD OUTPUT UNIT, THE F=OPTION STATEMENT
DEFINES DIFFERENT OPTIONS DURING EXECUTION SUCH AS THE USE OF THE
DISTRIBUTIVE LAW IN EXPRESSION MANIPULATIONS. THE F=ERASE STATE-
MENT RESETS THE VALUES OF VARIABLES 70O THEIR NAMES, THE F<DUMP
STATEMENT OUTPUTS SYMBOLIC EXPRESSIONS AND SYMBOL TABLES IN THEIR
INTERNAL FORMAT,

3e26l0 F=CONSTANTS

CONSTANTS IN FORMAL STATEMENTS MAY APPEAR EITHER IN DECIMAL
FORM OR IN THE FORM OF FORTRAM EXPRESSIONS. IN EITHER FORMs A
COMSTANT MAY BE EITHER AN INTEGER OR A SINGLE PRECISION REAL
{(FLOATING POINT)Y MNUMBER,

THE FORM OF DECIMAL CONSTANTS IS THE SAME AS THAT IN THE FOR=~
TRAN STATEMENTS, THUS:

0, 22, =2001
DEFINE DECIMAL INTEGERS, WHILE
0020 =10,2s 23,8E=2
DEFINE REAL CONSTANTS,

DURING EXECUTION, FORTRAN EXPRESSIONS YIELD NUMERICAL VALUES.
THESE NUMERICAL VALUES MAY BE USED IN FORMAL STATEMENTS AS CON=-
STANTS. A MAXIMUM OF 20 FORTRAN EXPRESSIONS MAY APPEAR IN ONE
FORMAL STATEMENT. HCO ‘EVER, ONLY INTEGER AND REAL VALUED FORTRAN
EXPRESSIONS ARE PERM: TED TO BE USED, AND OBVIOUSLY NO MIXED MODE
OPERATION IS ALLOWED. THE PROPER USE OF FORTRAN EXPRESSIONS IN
FORMAL STATEMENTS IS 7O ENCLOSE THEM IN A PAIR OF PARENTHESES AND
PRECEDE THEM WITH A SPECIAL CHARACTER: #, FOLLOWED BY I OR R SUCH
THAT #H1({...) INDICATES AN INTEGER, HR(...) INDICATES A REAL
CONSTANT, E.G,

DO 10 I=l,N
KZcse
¥Zsew

Yoo s BRIN) 6o e HRIXHY) o6 c HI(NXI=1)o00"

IN THE ABOVE FORMAL STATEMENT, THE 3 FORTRAN VALUED EXPRESSIONS
ARE ¥ Xw¥e AND Nelei, WITH THE FIRST TWO BEING REALs THE LAST
EN?F{?%Q @

DURING EXECUTION: THE FORMAL SYSTEM IS CAPABLE OF HANDLING
RATIONAL CONSTANTS AS RATIOS OF INTEGERS. SINCE RATIONAL NUMBERS

L

IN FORMAL STATEMENTS ALWAYS APPEAR CONCURRENTLY WITH OPERATORSS
E.G. 3/5 OR 3/(5%X}1=(3/5)/%s THEY ARE NOT PART OF THE LANGUAGE
ITSELFs BUT THEY ARE PART OF THE IMPLEMENTATION OF THE LANGUAGE.

302020 F@VARIABLES

VARTABLES APPEARING IN FORMAL STATEMENTS ARE REFERED TO AS
F=VARIABLES., THE RULES FOR NAMING F=VARIABLES ARE THE SAME AS
THOSE FOR NAMING FORTRAN VARIABLES EXCEPT THAT THERE IS NO IMPLI-
CIT ARITHMETIC MODE (INTEGER OR REAL) ASSOCIATED WITH THE FIRST
LETTER OF THE VARIABLE NAME.

F-VARIABLES MAY BE SUBSCRIPTED WITH A MAXIMUM OF 4 SUBSCRIPTS.
THERE IS NO DECLARATION ASSOCIATED WITH THE SUBSCRIPTED
F=VARIABLES, BUT THE SUBSCRIPTS MUST BE INTEGER CONSTANTS, INTEGER
VALUED FORTRAN EXPRESSIONS: OR F=EXPRESSIONS WHOSE VALUES ARE
INTEGERS, FURTHERMOREs THE VALUE OF A SUBSCRIPT MUST BE BETWEEN O
AND 511, INCLUSIVELY.

DURING EXECUTION, THE F=VARIABLES ARE CLASSIFIED AS EITHER
ATOMIC OR ASSIGNED, THE VALUE OF AM ATOMIC F=VARIABLE IS ITS NAME,
ANY F=VARIABLE IS ASSUMED 70 BE ATOMIC UNTIL AN F=ASSIGN STATEMENT
IS EXECUTED IN WHICH THE VARIABLE APPEARS ON THE LEFT SIDE OF THE
STATEMENT.,

EXAMPLES:
e A12Be RGS{2)e Y{0:s2:HI(3%1}1,511)
362630 F=FEXPRESSIONS

F=EXPRESSIONS ARE "ONSTRUCTED IN THE SAME MANNER AS FORTRAN
ARITHMETIC EXPRESSIONS EXCFPT THAT THE FUNCTION ARGUMENTS ARE
ENCLOSED IN BRACKETS ZWSTEAD OF PARENTHESES. THUS A FORMAL EXPRES=-
SION CONSISTS OF CERTAIN SEQUENCES OF CONSTANTSs SUBSCRIPTED AND
NON=SUBSCRIPTED Vﬁ%zﬁﬁ&gﬁy AND FUNCTION REFERENCES SEPARATED BY
ARITHMETIC ORERATORS: COMMAS: AND PARENTHESES,

THE ARITHMETIC OPERATORS ARE THE SAME AS THE FORTRAN ARITHMETIC
OPERATORSy 1.E.

+ ADD OPERATOR {UNARY OR BINARY}
v Su%?ﬁﬁbi O@%Wﬁ?ﬁﬁ (UNARY OR BINARY)
* LY OPt (BINARY)
7 (BINARY}
o (BINARY)

SOME OF THESE “RATORS ARE TRANSFORMED BY THE FORMAL PROCESSOR:
THERE ARE NO ENT&HH\a REPRESEN ﬁ?iﬁm OF THE SUBTRACT (=) AND

5=5

DIVIDE (/) OPERATORS: AND THE UNARY ADD OPERATOR IS SIMPLY DISRE=-
GARDED, IF F REPRESENTS ANY F=EXPRESSION,; THEN THESE TRANSFORMA-
TIONS ARE AS FOLLOWS:

+E => E

A => (=1)%E

Fi=E2 => Ei+(=1)%E2

Fi/E2 => E1%E2%%({=1)

THE FUNCTIONAL REFERENCFS HAVE THE FORM OF A FUNCTION IDENTI-
FIER FOLLOWED BY ITS ARGUMENTS WHICH ARE SEPARATED BY COMMAS AND
ENCLOSED IN BRACKETS. FOR EXAMPLE,

DIFf ¥xAsXe2]
1S A FUNCTION REFERENCE 70 THE DIF (DIFFERENTIAL OPERATION) FUNC=
TION WITH 3 ARGUMENTS. THE ARGUMENTS OF CERTAIN FUNCTIONS MAY
CONTAIN FURTHER FUNCTION RFEFERENCES, F.G,

NUMLIDIFLX%A,Xe21]
THERE ARE S TYPES OF FUNCTIONS AVAILABLE IN THE FORMAL STATEMENTS:
MATHEMATICAL, SPECIAL OR FORMAL, DIFFERENTIAL, DEFINED, AND UNDE=

FINED FUNCTIONS, THEY ARE DESCRIBED IN THE SUBSEQUENT SECTIONS OF
THIS MANUAL,

IN THE HIERARCHY OF OPERATIONS,PARENTHESES MAY BE USED IN THE
F=FXPRESSIONS TO SpPECIFY THE ORDER IN WHICH OPERATIONS ARE TO BE
EVALUATED,; AS IN FORTRAN ARITHMETIC EXPRESSIONS. E.G,

OkYA(YHHI (BRI w7y +XuxN

X+SUBSTL A% (B+C) 4Z+3:5¢SINLYJe 0,53

3=6

3aZelte MATHEMATICAL FUNCTIONS

THE FOLLOWING MATHEMATICAL FUNCTIONS ARE AVAILABLE:

EXPLX]
LOGL X1
TNHL X1
SINCX]
CosL X1
ATNL X1
FACLX]

BINL X

STEPL XY 21

Y1

- EXPONENTIAL FUNCTION
LOGARITHM FUNCTION
HYPERBOLIC TANGENT
SIN FUNCTION
C0S FUNCTION
ARCTAN FUNCTION

FACTORIAL FUNCTION, FLNJI = N!
N
BINOMIAL COEFFICIENT BIN[NeK] =
K
STEP FUNCTION
1 IF X=<Y<Z OR x=v=Z
STEPL XsYs2Z3 =
0 OTHERWISE

WHERE XsYesZ MAY BE ANY F=E¥PRESSIONS, THE LAST 3 FUNCTIONS, FAC»
BIN, AND STEP, ARE REFERED T0 AS INTEGER VALUED FUNCTIONS,

WHEN THE ARGUMENTS ARE CONSTANTSs; THE VALUES OF THE FUNCTIONS
ARE EVALUATED WITH REGARD TO THE OPTIONS MFCT/NOMFCTes INT/NOINT:

OPTION MFCT

NOMFCT

INT

NCOINT

" g

e

§

ez €S g

O

TXP,LOGs TNHs SIN,COSs TAN FUNCTIONS ARE EVALUA=
7D WITH CONSTANT ARGUMENT.

THE ABOVE FUNCTIONS ARE LEFT AS FUNCTIONAL
EXPRESSIONS.

FACINDI IS EVALUATED WHEN N IS AN INTEGER
CONSTANT, BINCNsK] IS EVALUATED FOR INTEGER
CONSTANTS N AND Ke STEPLXeYeZ1 IS EVALUATED
FOR CONSTANTS XsYeZe

FAC,BIN AND STEP FUNCTIONS ARE LEFT AS FUNC-
TIONAL EXPRESSIONS.

FOR SETTING THE OPTIONS, SEE SECTION 3.2.11.

3:2e5e FORMAL SPECIAL FUNCTIONS

TO USE THE FORMAL SPECIAL FUNCTIONS, ONE MUST FIRST UNDER=

3=7

STAND THE INTERNAL REPRESENTATION OF EXPRESSIONS. THE EXPRESSIONS
ARE STORED IN PREFIX NOTATION DURING THE EXECUTION, THIS NOTATION
IS A LEFT=TO-RIGHT LINEARIZATION OF THE TREE REPRESENTATION OF THE
EXPRESSIONS.

THE TREE REPRESENTATION OF AN ARBITRARY EXPRESSION CONSISTING
OF OPERATORSy Fy APPLIED TO OPERANDSs X1¢X2seee¢XNsy IS A TREE WITH
F AS THE ROOT AND X1r X2¢ .ees XN AS TERMINAL VERTICES, HOWEVER®?
IF ANY ARGUMENT, XI. IS ITSELF AN EXPRESSIONe G(Y1,Y2,Y3), THEN XI
1S REPRESENTED BY A SUBTREF:

////////// \\\\\\\
X1 B e XN
o l
Yi Y2 Y3

ALL TERMINAL VERTICES ARE EITHER CONSTANTS OR ATOMIC VARIAB=-
LES. ALL NON=TERMINAL VERTICES ARE OPERATORS. THE NUMBER OF ARGU=
MENTS OF AN OPERATOR IS THE NUMBER OF OUTGOING VERTICES. THE ROOT
OF A GIVEN TREE IS REFERRED TO AS THE LEAD OPERATOR OF THE CORRES=
PONDING EXPRESSION,

THE ARITHMETIC OPERATORS CAN BE REPRESENTED IN FUNCTION
NOTATION:

A+B => +(AsBY => +
RN
A B
Axt =D x(AeB) => *
) /// \\\
A B
AxxB => xkx(A¢B) => /**\
A i

WHEN MORE THAN 2 TERMS ARE ADDED OR MULTIPLIEDs, THE FORMAL
PROCESSOR AUTOMATICALLY COMBINES THE ARGUMENTS UNDER ONE VERTEX:

BEB4C => ¢ (AeB,CY => + .
AxBRC => *(A,B,C) s
B

(@]

SINCE + AND = ARE SYMMETRIC OPERATORS

£E8,BY = $(R,AY » w{AB)Y = ={DBsA)

3-8
THE FORMAL PROCESSOR AUTOMATICALLY ORDERS THE ARGUMENTS LEXICOGRA-
PHICALLY, THAT IS ACCORDING TO THE FOLLOWING SCHEME:
CONSTANTS
VARIABLES IN ALPHABETIC ORDER

SUBEXPRESSIONS ACCORDING TO THEIR LEAD OPERA-

TORS?
+ (ADDITION)
* { MULTIPLICATION)
ok { EXPONENTIATION)

MATHEMATICAL FUNCTIONS
DIFFERENTIAL OPERATOR
UNDEFINED FUNCTIONS IN ALPHABETIC ORDER

IF TWO SUBEXPRESSIONS HAVE THE SAME LEAD OPERATORs, THEN THE RELA=-
TION IS ESTABLISHED BY COMPARING THEIR NUMBERS OF ARGUMENTS. IF
THESE STILL AGREE, THEN THE ARGUMENYS THEMSELVES ARE COMPARED.

THE AVAILABLE SPECIAL FUNCTIONS ARE AS FOLLOWS:

Ty e @R oo BB o om U ws 0% @ 0D

EXPANDLE 3

o oz wm g PP o g 0 o UR @B o

WHERE E IS AN F=EXPR. SION, THIS FUNCTION TRANSFORMS E TO AN
EQUIVALENT FORM By THE APPLICATION OF THE DISTRIBUTIVE LAW OF
MULTIPLICATION:

Kxl{¥Y+2) =0 AxVe¥e7 AND (MY y%Z =D XaZ4YxZ
FURTHERMORE » SUMS RAISED TO INTEGER POWERS ARE EXPANDFD BY THE
APPLICATION OF THE BHBINOMIAL LAW:?

(XY beaK =i ookl & BINCK L JaXak(K=131%Y + o0 + YkxK

THE EXPRESSION E IS CHECKED FOR THE APPLICATION OF THESE TRANSFOR-
MATIONS IN ALL LEVELS,

EXAMPLE E o= (HeVi®i{X=Y) + SINL2%{X+Y)]

EXPANDIET = Me*2-Yxu2+SINL 25 X42%Y 1

3«9

FR g G Ak B oo g O wom

FLOATLE]

B g crn e o B G g Y o

FLOATBLE]

WHERE E IS AN F=EXPRESSION, THESE FUNCTIONS CONVERT THE INTEGER
AND RATIONAL CONSTANTS IN E INTO THEIR EQUIVALENT REAL FORM, FLOAT
CONVERTS ALL CONSTANTS IN Es FLOATB CONVERTS ONLY THOSE CONSTANTS
WHICH ARE NOT IN EXPONENTS,

EXAMPLE ¢
FLOATI 2uX%%1/273 = 2.0 % Xux0,5
FLOATBE 2%X%%1/271 = 2,0 % Xwxx1/2

T oga et e TR Gm gp O e OB

FIXEE»NE

R ez e om PV ey en OB o wm

WHERE £ IS AN F<EXPRESSION AND N IS AN INTEGER CONSTANT OR AN
F=EXPRESSION WHOSE VALUE IS AN INTEGER, THESE FUNCTIONS CONVERT
REAL CONSTANTS IN E INTO INTEGERS. THE CONVERSION IS DONE AS
FOLLOWSS

LET R BE A REAL CONSTANTs THEN DEFINE I AS THE NEAREST INTEGER
TO Re THEN R IS REPLACED By I IF AND ONLY IF THE ABSOLUTE VALUE OF
THE DIFFERENCE BETWEEN R AND I IS LESS THAN OR EQUAL TO 10%%N,
NOTE THAT N SHOULD BE A NEGATIVE INTEGER,

FIX CONVERTS ALL REAL CONSTANTS IN £ SUBJECT TO THE ABOVE
CONDITION, FIXE CONVERTS REAL CONSTANTS ONLY IF THEY ARE PART OF
AN EXPONENT,

EXAMPLE
FEXEZ;i%XﬁwE@?s@i: TOPERNEKD L2
FIKEZ.0aXu%2,2,07 = 2%Xa%?

Ty o e v B e o, T e 022 @ WD

3FOSFXEET
THIS FUNCTION DISTRIBUTES THF ExPONENT OF A PRODUCT AS BASFE OVER
I7S FACTORSs I1L.E
(E1#E2%e o o #EMNI#uF =D (E1%xF i (E2%sF %0 ok (ENxxF)

B g gz O oy o e WO i BB D

ON %NG N IS A POSITIVE INTEGER CONSTANT.

WHERE é IS AN F=EXPRESST
NC THE N*TH ARGUMENT OF THE LEAD OPERATOR OF

£S5
EUIG FUNCTION EXTRACTS

o~

EXAMPLE ¢ E = 243%X+buiax?

ARGLE 3 Izl %2,
ARGLARGLE 31,2 1=X2%2,
ARGL ARGLARGLEs33s21e23=2,

oz B 2B e TP aw g U B @D ez

NUML E 3

DENOMLE]
WHERE E IS AN F=EXPRESSION, THESE FUNCTIONS EXTRACT THE NUMERATOR
AND DENOMINATOR PART OF E, RESPECTIVELY. OBVIOUSLY.,
NUMLE J/DENOMLE J=E, THESE FUNCTIONS MUST BE CLARIFIED BY THE
FOLLOWING DEFINITION FOR THE NUMERATOR/DENOMINATOR OF AN
F=EXPRESSION E:

1, £ IS NOT A PRODUCT OR EXPONENTIAL EXPRESSION:s I.E. THE LEAD
OPERATOR OF E IS NOT % OR %k, THEN
NUMLED = E DENOMLE] = 1

2., E IS AN EXPONENTIAL EXPRESSION: 1.E. THE LEAD OPERATOR OF E IS
x%p SO THAT EzAxxBs THEN IF B 1S NOT A SUMes THEN
EITHER NUMCEI=1, DENOMLEI=E, IF B IS A NEGATIVE CONSTANT OR
B IS A PRODUCT OF A NEGATIVE CON-
STANT AND AN ARBITRARY
F=EXPRESSION
OR NUMCE J=Es DENOMFLEJ=1, IF B DOES NOT SATISFY THE ABOVE
CONDITION,
IF B IS A SUMe Bz=Bl+,,.+BM, THEN E=(AxxBl)%eeok(A%xkBM),
THE NUMERATOR AND DENOMINATOR
OF E IS DETERMINED AS E HAS
BEEN A PRODUCT.

3. E IS A PRODUCT, 1. o THE LEAD OPERATOR OF E IS %y THEN
FzEi%, . o%xEN
AND NUMLE J=NUMEE1 J% . o « *NUMLEN]
DENOME £ "=DENCOMLE1 I%, o e *DENOMLEN]
EXAMPLES: NUME S+ X (=111 = S4+Xsk(=1)
NUME X% % (N=5}] = Xkx(Ne§)
NUME X (=82NY] = &

NUME 3 (X (=2}) %Y1 = 3kY

3=11

TR i e @ TN G OB @ O A

BASELE]

B oy e o e T e g O s ES @

EXPONLE]

WHERE E IS AN F=EXPRESSION, THESE FUNCTIONS DELIVER THE BASE AND
EXPONENTIAL PARTS OF E PROVIDED THAT THE LEAD OPERATOR OF E IS *%,
OTHERWISE BASE[EJ=E AND EXPON[LEI=1,

EXAMPLES: BASET (A+Y) ax{H=N} J=X+Y
BASEL SaX w2 J=5x)%%2e EXPONL SaXk%27=1
BASEL =X#k2 JreXgk2 Z(=1)%Y%x2

BASE[L ARGL =x%%2,231 = BASEL X*%2J = X

CODEMLE]
WHERE E IS AN F=EXPRESSION, THIS FUNCTION TRANSFERS E INTO A
COMMON DENOMINATOR FORM, IF E IS NOT A SUMs I.E. THE LEAD OPERATOR
OF £ IS NOT +» THEN NO TRAMSFORMATION TAKES PLACE. OTHERWISE. IF
E=El4.eo+ENe THE DENOMINATORS OF EACH TERMy DENOMLEL1lysees
DENOMLEN1, ARE DETERMINED ACCORDING TO THE DEFINITION OF THE DENOM
FUNCTION., THESE DENOMINATORS ARE EITHER 1 OR EXPONENTIAL EXPRES=
SIONS OF THE FORM AIxxBI, THE LEAST COMMON MULTIPLE.» CD, OF THESE
EXPONENTIAL EXPRESSIONS 1S DETERMINED AS THE PRODUCT OF THOSE
DENOMINATORSs Al*%BI. FOR WHICH THERE EXISTS NO OTHER DENOMINATOR
AdxxBJs I¥J, SUCH THAT AI=AJ AND BI<BJ, THE RELATION BI<KBJ IS
THE NATURAL RELATION IF BOTH OF THEM ARE CONSTANTS, OR BI=C1xD AND
BJz=C2%D WITH THE CONEYANT cl1 AND C2 SATISFYING THE RELATION Ci<C2,
ONCE THE LEAST COMMON “ULTIPLE, OR COMMON DENOMINATOR, CD IS
DETERMINED, EzEL1+E2+..+EN IS TRANSFORMED TO
(E1xCD+E2%CD4, o « +EN*CD I % (CD*x (=1}),

EXAMPLES? CODEME Xk V(=117 = XxYix(=1)
CODEME X4 Vsm(=137 = (Mx¥Y+iIx{¥rx(=1})

CODEME X {=25N) 4 Xkx (=3xN) Iz (XakN+1) % (Xxx (=3N))

WHERE E IS AN FwﬁX?QFgJ?GNa AND ¥ IS AN F=EXPRESSION SUCH THAT IT
IS NEITHER A SUM NOR A PRODUCT, 1.E, THE LEAD OPERATOR OF X IS
NEITHER + NOR =%, THIS VU%€“§9M EXTRACTS THE COEFFICIENT OF X INE
WHICH IS DETERMINED AS FoLLOWS

3=12

i, IF E IS NEITHER A SUM NOR A PRODUCTs 1.E. THE LEAD OPERATOR OF
E IS NEITHER + OR % THEN COEFFTE+X3=i IF E=Xs AND
COEFFLEsX1=0 IF EzXe

2, IF E IS A PRODUCT» 1.E. ESE1%E2%,,*ENs THEN COEFFLE,XI=E/EJ IF
THERE EXISTS J SUCH THAT EdJ=X FOR SOME 1=<J=<N., COEFFLE,X]=0
OTHERWISE.

3, IF E IS A SUMe I.E. ESE1+E2+..¢+ENy THEN
COEFFLEsX1=COEFFLEL1e X1+ COEFFLE2sX1+o. . +COEFFLENs X1,

EXAMPLESS COEFFLEFE] = 1
COEFFL2+3uX+u%Y a2, Xk%2] = 4

COEFFL X+X*SINEXTe X3 = 1+SINCX]

T gy o v T o OB an ED 6 O Q0 G0 g T an @5 ER 00 an e e B an 6 gn

SUBRSTIEsXleYisooos XNsYNT {N<21)

WHERE EsX1sYiroeerXNe YN ARE ARBITRARY F=EXPRESSIONS. IN THE

EXPRESSION Er Y1eY20se09 YN ARE SUBSTITUTED FOR X19X2000e0 XNy

RESPECTIVELY. THE SUBSTITUTION OCCURS IN A LOOP#! FIRST Y1 IS

SUBSTITUTED FOR X1 IN E, THEN Y2 IS SUBSTITUTED FOR X2 IN THE
PREVIOUSLY CHANGED EXPRESSION E¢ ETC,

EXAMPLE: SUBSTI AxZ4+7%%2eZs X4YsYs 3]
SUBSTIAR(H4YIHIAEY I %%2:Ye 3]
Ax{X+3)+ (X3 %%2

By

S g e @ m O @ cp 00w G2 2 S5 OB OB g B up €0 wR S an 6D o VP g G S o

RE@LﬁCEEeXIOYia@@eOXNvYN] {N<21)

THIS FUNCTION IS SiMLpﬁP T0 SUBSTr BUT THE SUBSTITUTION DOES NOT
OCCUR IN A LOOP. THUS: THIS FUNCTION MAY BE USED TO EXCHANGE
VARIABLES.

EXAMPLE ¢ REPLACLH=YeXeYs¥eX] = Y=X
REPLACE Xk)k o Xk 2p=1 s Xkkli,1] = 0

WHEN THE EXPRESSION XI 7o BE REPLACED 8Y YI IN SUBST OR REPLAC
FUNCTIONS, IS A SyM OR PRODUCT, THEN THE FOLLOWING RULES APPLY:
IF X1 Ig A SUMe THEN IT 16 REPLACED ONLY IF IT APPEARS WITHOUT
DISTRIBUTED FACTORS:

IF Hi=A+D THEN

CxlA+R+0Y =p Cx(B+Y1:

BUT CxA+C#+84C0xD REMAINS UNCHANGED.

IF XI 1S A PRODUCT, THEN IT IS REPLACED ONLY IF IT APPEARS WI-

3=13

THOUT DISTRIBUTED EXPONENTSS
IF ¥Ii=AxD THEN
(AxBxD)%%C => (BxYI)xxC
BUT (A**C)#(D**C) REMAINS UNCHANGED,

REPLACEMENT OF A SUBEXPRESSION IS PERFORMED BY THE REPLAC FUNTION

ACCORDING TO THE ORDER OF ITS ARGUMENTS. THUS
REPLACCA+B+CoA+CoyXeA4Bs Y1 = B+X
REPLACLA+B4+CoA+BrYrA4CoXT = CH+Y

NOTE: SUBSTLEsX1ieYL1eX2,Y2] = REPLAC[CREPLACLE+X1»Y13»X2,Y21]

LDOPLE]

2 TP ap o an on TP eB oo B an

NARGLE]
WHERE E IS AN F=EXPRESSION, THESE FUNCTIONS ARE INTEGER VALUED
FUNCTIONS, LDOPLEJ GIVES THE IDENTIFIER INTEGER OF THE LEAD OPERA=
TOR OF E. NARG[EJ GIVES THE NUMBER OF ARGUMENTS OF THE LEAD OPERA=-
TOR OF E, THESE SPECIAL FUNCTIONS CORRESPOND TO THE SIMILAR FOR=
TRAN VALUED FUNCTIONSs SEE SECTION 3,3,

REMARK ¢ :
THE FOLLOWING & SPECIAL FUNCTIONS:
ARG
NUM
DENOM
BAGE
EXPON
COEFF
ARE NOT EVALUATED .WH. EVER THEIR ARGUMFNTS CONTAIN A DUMMY
VARIABLE OF A DEFINED FUNCTIONs SEE 3,27,

3=14

32660 DIFFERENTIAL FUNCTION

THE DIFFERENTIAL FUNCTION DIFFERENTIATES AN EXPRESSION IN
RESPECT TO A VARIABLE. ITS FORM IS AS FOLLOWS

2'E
2 X"
WHERE E IS ANY F=FXPRESSIONs X MUST BE A VARIABLE (SUBSCRIPTED OR

NOT) AND N MUST BE A POSITIVE INTEGER CONSTANT WHICH GIVES THE
ORDER OF DIFFERENTIATION,

DIFLE.X,NJ =

EXAMPLE® DIFLXXSINDX#Y e X923 = 2%Y*COSE XxY J=Xk V% 2%¥SINL X*xY]

WHEN THE EXPRESSIONs E» CONTAINS AN UNDEFINED FUNCTION WITH ITS
ARGUMENTS CONTAINING THE DIFFERENTIAL VARIABLE OR AN UNDEFINED
ARGUMENT OF A DEFINED FUNCTION, THEIR DIFFERENTIATION WILL BE ONLY
NOTED AND NOT EXECUTED. THE DIFFERENTIATION IS DENOTED BY "(Aa/aX)?
IN OUTPUT LISTINGS,

WHEN THE ARGUMENTS OF AN UNDEFINED FUNCTION DO NOT CONTAIN THE
DIFFERENTIAL VARIABLE, THEN THEIR DIFFERENTIAL QUOTIENTS ARE ZERO,
FOR THE DEFINITION OF UNDEFINED FUNCTION, SEE 3¢2.8,

36267 DEFINED FUNCTIONS

FREQUENTLY USED FUNCTIONS MAY BE DEFINED BY AN ASSIGN STATEMENT
SIMILAR TO FORTRAN FUNCTION STATEMENTS., BUT UNLIKE THOSE STATE=-
MENTSe, THE ARGUMENTS (DUMMY VARIABLES) MuST BE DEMOTED BY POSITIVE
INTEGERS IN BRACKETS SUCH THAT AN INTEGER N REFERS TO THE N*TH
ARGUMENT . E.G,

F oz [33x{Axl1dex24B%[2 Ix%x2)

DEFINES A FUNCTION F 7 3 VARIABLES,

THE NAME OF THE DEFINED FUNCTION MAY BE SUBSCRIPTED FOLLOWING
THE RULES OF SUBSCRIPTION FOR VARIABLES,

THE FOLLOWING & SPECIAL FUNCTIONS: ARG, NUMs» DENOM, BASE, EXPON
AND COEFF, ARE NOT EVALUATED WHEN THEIR ARGUMENTS CONTAIN DUMMY
VARIABLES: E G

FN = NUMIL131/023]
IS LEFT UNCHANGED,

ONCE A FUNCTION IS DEFINED BY AN ASSIGN STATEMENT IN THE ABOVE
FASHION OR BY A READ STATEMENTs IT MAY BE USED WITH THE PROPER
NUMBER OF ARGUMENTS. THE ARGUMENTS MAY BE ANY F=EXPRESSIONS. FOR
EXAMPLE, THE ABOVE FUNCTION MAY BE REFFRENCED AS

FLdaeY ¥, 77

WHICH GIVES THE FOLLOWING EXPRESSION
ZH (AR (X4Y) ok 2+Bx (A=Y) %%2)

WHEN THE DEFINED FUNCTION HAS UNEVALUATED SPECIAL FUNCTIONS»
THEY WILL BE EVALUATED AFTER SUBSTITUTION OF THE DUMMY VARIABLES.

THUS
FNEX/YoYh2/21

GIVES
XxZ2
A FUNCTION MAY NOT BE DEFINED RECURSIVELY. E.G,
G = [1I%6LX~11

A FUNCTION MAY BE REDEFINED BY OTHER ASSIGN OR READ STATEMENTS
DURING EXECUTION

36268 UNDEF INED FUNCTIONS

IF A FUNCTION IS REFERENCED BY AN IDENTIFIER FOLLOWED BY ARGU=-
MENTS IN BRACKETS, AND IF IT wAS NOT DEFINED PREVIOUSLY BY AN
ASSIGN OR READ STATEMENT, THEN THE FUNCTION IS AN UNDEFINED FUNC=
TION. THE ARGUMENTS CAN BE ARBITRARY F=-EXPRESSIONS,

THE NUMBER OF ARGUMENTS OF AN UNDEFINED FUNCTION MAY NOT EXCEED
SEVEN.

3e2e90 ASSIGN STATEMENT

A FORMAL ASSIGN & ATEMENMT MAY DEFINE A FUNTION OR THE VALUE OF
A VARIABLE,

WHEN AN ASSIGN STATEMENT DEFINES A FUNCTION Fo o
E o= E = 6@@{3.30@6

THE DEFINING EXPRESSION E, FOLLOWING THE = CHARACTERs MUST CONTAIN
AT LEAST ONE ARGUMENT REFERENCE, I.E, POSITIVE INTEGER IN BRACKETS
AS AN OPERAND. THE LARGEST APPEARING INTEGER DEFINES THE NUMBER OF
ARGUMENTS OF THE FUNCTION, AND AN INTEGER N REFERS TO THE N¥TH
ARGUMENT . THE FUNCTION ASSIGN STATEMENT IS NOT RECURSIVE., I.E. THE
DEFINING EXPRESSION E OF THE FUNCTION F MAY NOT REFERENCE ITSELFs
DIRECTLY OR INDIRECTLYe. FOR FURTHER USE OF THE ONCE DEFINED FUNC=
TIONs SEE SECTION 3.7,

THE FORMAL ASSIGN STATEMENT DEFINES OrR REDEFINES THE VALUE OF A
VARIABLE SIMILARLY TO A FORTRAN ASSIGN STATEMENT:

3=16

vV = E OR W = EliEZPoowBEN

WHERE VsW ARE F=VARIABLES, POSSIBLY SUBSCRIPTEDs AND EsEilseesrEN
ARE F=EXPRESSIONS, IN THE LATER CASE, W IS CALLED A LIST=VARIABLE
AND MAY BE USED T0 REPRESENT A LIST OF FUNCTION ARGUMENTS, E«G.:

1Yo 2 AND W(2) = Xe2¢Ye i

W(1) i
SUBSTLFEXeYJeW(HI(I))]

= X
vV =

DEFINES THE VALUE OF THE VARIABLE V AS Fri1,2) IF THE FORTRAN
VARTIABLE I IS ONE, OR AS F[2,11 WHEN I IS TwO,

362610 I/0 STATEMENTS
THE FORMAL READ STATEMENT
READ (K) V1sV2reee0VN (N=>1)

READS N F=EXPRESSIONS FROM FORTRAN CARD INPUT UNIT K AS THE VALUES
OF VARIABLES OR AS THE DEFINING EXPRESSIONS OF FUNCTIONS,
V1eV2reo0er VN, EACH F=EXPRESSION ON THE CARDS MUST BE TERMINATED
BY SEMICOLON (;)e FURTHERMORE, THE CARDS CONTAINING THE
F-EXPRESSIONS MAY NOT HAVE ANY OTHER PUNCTUATIONS, THE USE OF
BLANK COLUMNS AND THE CONTINUATION OF AN F=EXPRESSION ON THE
FOLLOWING CARD IS PERMITTED. THE MAXIMUM NUMBER OF CARDS CON=-
TAINING ONE F<-EXPRESSION IS 8,

THE FORMAL WRITE STATEMENT

WRITES OUT THE VALUES OF THE VARIABLES (OR DEFINING EXPRESSIOMS OF
FUNCTIONS) ViseoepVN ON THE FORTRAN PRINT OR PUNCH UMIT K, EACH
VALUE/EXPRESSIONs EI» PRINTED OR PUNCHED IS PRECEDED 8Y THE NAME
OF THE VARIABLE/FUNCTION AMD BY AN EQUAL SIGN:

VI = EI

FURTHERMORE, EACH ITEMe VI=EI, STARTS ON A NEW LINE IN COLUMN L
AND THE NUMBER OF COLUMNS USED DOES NOT EXCEED M, THUS, THE SuUM OF
L AND M MAY NOT EXCEED THE AVAILABLE NUMBER OF COLUMNS OF ONE
LINE/CARD,

3¢2.11. OPTION STATEMENT

THE OPTION STATEMENT DEFINES THE USE OR NON=USE OF CERTAIN
EQUIVALENT TRANSFORMATIONS ON SYMBOLIC EXPRESSIONS DURING EXECU=-
TION. IT IS AN EXECUTABLE STATEMENT, THUS THE EXECUTION OF A NEW
OPTION STATEMENT MAY REDEFINE PREVIOUSLY DEFINED OPTIONS. THE
AVAILABLE OPTIONS OR TRANSFORMATIONS ARE AS FOLLOWS:

INT/NOINT

MFCT/NOMFCTY

PRODEX/NOPREX

EXPANO (N}

BASE (K}

3=17

*INT? OPTION CAUSES THE EVALUATION OF THE
INTEGER VALUED FUNCTIONS WHENEVER THEIR ARGU=
MENTS ARE INTEGER CONSTANTS. *NOINT® OPTION
LEAVES THESE FUNCTIONS UNEVALUATED.

"MFCT* OPTION CAUSES THE EVALUATION OF THE
MATHEMATICAL FUNCTIONS WHENEVER THEIR ARGUMENTS
ARE CONSTANTS. *NOMFCT®* OPTION LEAVES THESE
FUNCTIONS UNEVALUATED,

"PRODEX® CAUSES THE EXPANSION OF EXPONENTIALI-
ZATIONS OVER PRODUCTSsy I.Ee (E1%E2%, e o ¥EN)*%F
=> (EixxFixoe o (ENkkF), NOPREX TURNS THE OPTION
OFFs I.Fe THE ABOVE TRANSFORMATION IS NOT
PERFORMED,

WHERE *N' MUST BE A NON=NEGATIVE INTEGER. THIS
OPTION ALLOWS OR PROHIBITS THE AUTOMATIC USAGES
OF THE DISTRIBUTIVITY AND/OR BINOMIAL EXPAN=-
SION,
Nz=1: THE RIGHT AND LEFT DISTRIBUTIVE LAW WILL
BE APPLIED, I.E,

Eix(E2+E3) => E1%E2+E1%E3

(E1+E2)%E3 => EL{*E34+E2%E3
BUT THIS LEAVES THE EXPRESSIONS OF THE FORM
(E14E24 e o +EN} 2%l WHERE K IS AN INTEGER®
UNCHANGFD, I.E, THE BINOMIAL LAW IS NOT APPLIE=-
Do
N>1: IN ADDITION TO THE USE OF THE DISTRIBUTIVE
LAWs THE EXPONENTIAL EXPRESSIONS ARE ALSO
EXPANDED ACCORDING 7O THE BINOMIAL EXPANSION
WHENEVER K IS LESS THAN OR EQUAL TO N,

©Nu ¢ THIS PROHIBITS THE USE OF THE DISTRIBUTIVE

AND BINOMIAL LAWS,

WHERE *KY IS EITHER LETTER *E' OR INTEGER Qe2
OR 10,
K=0: THIS LEAVES ALL CONSTANTS RAISED 70 A
NON=CONSTANT ARGUMENT { E.Ge Cx%E) UNCHANGED.
Kz2 OrR 10: THIS CAUSES THE CONSTANT BASE IN
CxxE TO BE TRANSFORMED TO 2 OR 10 » RESPEC-
TIVELY. 1.E.
Camf => Zuxx{ExLOGECI/LOGL2T) K=2
Caxb z=» 10%x{ExLOGLCI/LOGLION} K=10
(=E: THIS CAUSES THE TRANSFORMATION OF THE
ABOVE EXPRESSION INTO EXPONENTIAL FUNCTION,
1.Es

Cxwf = EXAPUE2LOGLCIT

EXAMPLES OPTION EXPANDO10}) ¢ NOINT

3-18

3s2012. ERASE STATEMENT

THE ERASE STATEMENT ATOMIZES SPECIFIED VARIABLESs I.E. RESETS
THEIR VALUES TO THEIR NAMES. THIS STATEMENT FREES THE STORAGE
LOCATION OCCUPIED BY THE EXPRESSION VALUES OF THE LISTED VARIABLE-
S, THE USE OF THIS STATEMENT MAY BE ESSENTIAL TO AVOID EXHAUSTING
FREE STORAGE DURING THE EXECUTION OF A LARGER FORMAL PROGRAM, THE
FORM OF THE STATEMENT IS AS FOLLOWS?

ERASE VisV2reeoe¢VN

WHERE ViseeserVN ARE NAMES OF F=VARIABLES. VI MAY APPEAR WITH OR
WITHOUT SUBSCRIPT, WHEN vI IS LISTED WITH A SUBSCRIPT, E.Gs
A{1,2)s THEN ONLY THE VARIABLE WITH THE SPECIFIED SUBSCRIPT IS
RESET. WHEN VI IS LISTED WiTHOUT A SUBSCRIPT, E.G. Ay AND VI WAS
USED WITH SUBSCRIPTS PREVIOUSLY, THEN ALL VARIABLES WITH THE SAME
NAME AND DIFFERENT SUBSCRIPTS ARE RESET. EXAMPLE:

ERASE A(L,1)rA(2+1)9BsX
" 3626130 DUMP STATEMENT
THE FOLLOWING 4 VARIATIONS OF DUMP STATEMENT ARE AVAILABLE:

DUMP SYMBOLS

DUMP EXPRESSIONS
DUMP ALL SYMBOLS
DuMP ALL EXPRESSIONS

DUMPING SYMBOLS GIVES A LIST OF THE F-VARIABLES WHICH HAD BEEN
ASSIGNED PREVIOUSLY., DUMPING EXPRESSIONS GIVES THE LIST OF ASSIG-
NED F=VARIABLES TOGETHER WITH THEIR EXPRESSION VALUES, THE ABSENCE
OF *ALL® MEANS THAT 7.7 LIST IS RESTRICTED TO YHE SUBPROGRAM WHICH
CONTAINS THE DUMP STATEMENT. vALLY MEANS THAT THE LIST INCLUDES
ALL VARIABLES/EXPRESSIONS FROM EVERY SUBPROGRAM.

Je2s1be ROLOUT STATEMENT

THE ROLOUT STATEMENT PROVIDES THE USER TO USE THE AVAILABLE
CORE STORAGE THE MOST ECONCMICALLY, DURING EXECUTION, THE FORMAL
SYMBOL TABLE AND SYMBOLIC EXPRESSIONS ARE STORED IN A RESERVED
CORE AREA., WHEN THIS AREA 1S EXHAUSTED, SYMBOLIC EXPRESSIONS ARE
COPIED OUT TO THE DRUM AND THEIR PLACES ARE MADE AVAILABLE. THIS
PROCESS IS AUTOMATICe. AND IT DOES NOT CHECK FOR THE TYPE OF EXPRES=
SIONS TO BE ROLLED OUT 70O DRUM: THUS IT MAY HAPPEN THAT THE ROLLED
OUT EXPRESSION IS NEEDED A COUPLE OF STEPS LATER. THE USER MAY
AVOID THIS OISADVANTAGE BY SPECIFYING THE ASSIGNED VARIABLES,
VieV2reoeeeVNe IN THE ROLOUT STATEMENT

ROLOUT V1eV2eoooe VN

3=19

WHOSE EXPRESSION VALUES ARE NOT USED IN THE NEAR FUTURE, THUS THEY
CAN BE ROLLED OuUT 70 PROVIDE MORE SPACE IN CORE.

36201556 SAVE AND RESET STATEMENTS

THE SAVE STATEMENT PROVIDES THE USER TO SAVE THE RESULTS OF HIS
SYMBOLIC CALCULATIONS: I.E., THE OBJECT TIME FORMAL SYMBOL TABLE
AND SYMBOLIC EXPRESSIONS, IN AN EXTERNAL FILE, THE RESET STATE-
MENT PROVIDES THE RETRIEVAL OF A PREVIOUSLY SAVED RESULTS, IT IS
IMPORTANT TO KNOW THAT THE ENTIRE FORMAL OBJECT TIME DATA STORAGE
1S SAVED, WHICH OVERWRITES THE DATA STORAGE WHEN THE RESET STATE-
MENT IS EXECUTED. FURTHERMOREs, SINCE THE FORMAL DATA STRUCTURE
CONTAINS THE USER'S SUBPROGRAM NAMES (FIRST 6 CHARACTERS OF THE
ELEMENT NAME) IN ITS SYMBOL TABLEs, THE RESET STATEMENT MUST APPEAR
EITHER IN THE SAME RUNs OR IT HAS TO HAVE SUBPROGRAMS WITH NAMES
CORRESPONDING TO THE NAMES OF SUBPROGRAMS WHERE THE SAVE STATEMENT
OCCURED,

THE FORMAT OF THE SAVE AND RESET STATEMENTS ARE AS FOLLOWS:

SAVE FILE.ELT/VERSION

RESET FILE,ELT/VERSION
OR

SAVE LELT/VERSION

RESET ELT/VERSION

WHERE FILE IS THE NAME OF THE EXTERNAL FILE AND IT MUST BE
ASSIGNED BY THE USER PRIOR TO THE EXECUTION OF HIS PROGRAM., WHEN
FILE IS NOT SPECIFIEDe. THEN IT IS ASSUMED 70 BE TPF%$., ELT/VERSION
IS THE NAME AND VERSION OF THE ELEMENT IN THE FILE, VERSION IS
OPTICNAL, AND IT MAY BE DELETED.

Je3e FORTRAN=VALUEL FUNCTIONS

THE FORTRAN VALUED FUNCTIONS ARE FUNCTIONS AVAILABLE FOR USE IN
FORTRAN STATEMENTS. THEIR ARGUMENTS ARE F-EXPRESSIONS ENCLOSED IN
APOSTROPHES. THE AVAILABLE FUNCTIONS ARE AS FOLLOWS:

o ER ey O cin T g o w» e D B

LDOP(E®)

o < 2 O s U g aow @0 wmn OF G e

GIVES AN INTEGER CORRESPONDING TO THE LEAD OPERATOR OF THE
F~EXPRESSION E, THE CORRESPONDENCE IS AS FOLLOWS:

CONSTANT ZERO 0 EXP 32

INTEGER CONSTANT 1 LOG 33

RATIONAL CONSTANT 2 TNH 34

REAL CONSTANT 3 SIN 35

UNDEF INED FUNCTION coSs 26
ARGUMENT 5 ATN 37

NON=SUBSCR, VARIABLE 6 FAC 50

SUBSCRIPTED VARIABLE 7 BIN 51

COMMA (LLIST) 16 STEP 82

+ (SUM) 18

* (PRODUCT) 19

% (EXPONENTIALIZATION) 20

DIFF, OPERATOR 23

UNDEF INED FUNCTION 25=31
EXAMPLE S I = LDOP('X+Y+1")

WITH ATOMIC F=VARIABLE, X AND Y, THE EXECUTION OF THIS FORTRAN
STATEMENT SETS I EQUAL T0O 18 CORRESPONDING TO A SUM.

NARG('E")

- w0 G D g TP e @ e TP o o

GIVES THE NUMBER OF ARGUMENTS OF THE LEAD OPERATOR OF THE

F=EXPRESSION, E, WHEN E IS A CONSTANT, VARIABLE, OR UNDEFINED
FUNCTION ARGUMENT, THEN NARG GIVES ZERO,

EXAMPLE ¢ JENARG(*X4Y+17)

SETS THE VALUE OF J T0 3,

IVALUE(E")

VALUE(*E")

GIVE ZERO WHENEVER THE F<-FXPRESSION E IS NOT A CONSTANTy OTHER=-
WISE THEY GIVE THE CONSTANT VALUE FITHER IN INTEGER FORM (IVALUE)
OR IN REAL FORM (VALUE),

IDENT(*'EL1,E27)

- R e D o O o 6 e T o gn B ap 05 @ W9 0

GIVES LOGICAL VALUE oTRUE. WHEN THE TWO F=EXPRESSIONS ARE IDENTI=
CAL: GIVES FALSE, OTHERWISE,

EXAMPLE TOPTION EXpAMD () *

T=IDENT (" Xa (X+Y) s X2 X%Y)

OPTION EXPAND(5)?

JZIDENT (X (X+Y) 9 Xk 24 X%Y ")
T:E EXECUTION OF THE ABOVE STATEMENTS SETS I TO .FALSE, AND J TO
« TRUE ,

NCOUNT (0)

GIVES THE NUMBER OF AVAILABLE STORAGE LOCATIONS IN CORE FOR THE
SYMBOLIC EXPRESSIONS. THE ARGUMENT 0 IS A DUMMY ARGUMENT,

Jolbo FORMAL VARIABLES AS SUBPROGRAM ARGUMENTS

THE FORMAL SYSTEM ALLOWS FORMAL VARIABLES AS PART OF THE ARGU=-
MENT LIST IN SUBPROGRAMS (FUNCTION OR SUBROUTINE) WITH SOME RE-
STRICTIONS, THE RULES TO RE FOLLOWED ARE AS FOLLOWS:

IN THE CALLING ROUTINE:?

CALL SUB(OOO"V"'.Ot) OR
CALL SUB(eeer"VIEY " 9040)

WHERE V MUST BE A VARIABLE OR FUNCTION NAME WHICH MAY BE
SURSCRIPTED RBY E FOLLOWING THE RULES OF SUBSCRIPTION» BUT IT
MAY NCT CONTAIN FORTRAN TYPE OF EXPRESSIONS,

THE ARGUMENT MUST -BF TERMINATED BY SEMICOLON AND ENCLOSED IN
APOSTROPHES,

IN THE CALLED ROUTINE:
SUBROUTINE SUB(,ee? 'A% p0ese)

THE CORRESPONDING ARGUMENT NAME MUST BE ENCLOSED IN APOSTRO=
PHES, AND IT MUST APPEAR WITHOUT SUBSCRIPT,

FXAMPLE ¢

CALL SUR("A; ") SUBROUTINE SyUB(*BY)
Bz2x X

CALL SUBR(TCs)y SUBROUTINE SURR('D?)

Di2e3)2Xxk?

3=22

3¢5, SUMMARY OF RESTRICTIONS,

1, RESTRICTED EXTERNAL NAMES,
NAMES STARTING WITH *FML' ARE RESERVED FOR FORMAL
OBJECT TIME ROUTINES,

2, MAXIMUM NUMBER OF ARGUMENTS IN FORMAL FUNCTIONS.

DEFINED FUNCTION 20
UNDEFINED FUNCTION 7
SUBST 1+2%20
REPLAC 1+2%20

3, SUBSCRIPTS.
MAXMUM &
INTEGER VALUED IN RANGE 0 = 511

4, DIMENSIONALITY OF F=VARIABLES,
DIMENSIONALITY OF AN F=VARIABLE: I.E. SUBSCRIPTED OR NOT»
IS DEFINED BY ITS FIRST USE ON THE LEFT SIDE OF AN
ASSIGN STATEMENT, SUBSEQUENT USE OF THE VARIABLE MUST
CORRESPOND TO ITs, I1.E., A NON=SUBSCRIPTED VARIABLE MUST
BE USED WITHOUT SURBRSCRIPT, A SUBSCRIPTED VARIABLE MUST
BE USED WITH SUBSCRIPT(S), THERE IS NO RESTRICTION ON THE
USE OF A SUBSCRIPTED VARIABLE WITH DIFFERENT NUMBERS
OF SUBSCRIPTSs E.G. A(5) AND A(2,0¢6) MAY BE USED
IN THE SAME PROGRAM.
WHEN AN F=VARIABLE WHICH DOES NOT APPEAR AS SUBPROGRAM
ARGUMENT IS ERASED BY AN ERASE STATEMENTs THEN ITS
DIMENSIONALITY MAY BE REDEFINED,

5. SUBPROGRAM ARGUMENTS,
ONLY F=VARIAL 7S WITHOUT SUBSCRIPTS AND DEFINED
FUNCTIONS MAY BE USED AS ARGUMENTS,.
ERASING THE VALUE OF AN F=VARIABLE WHICH IS A SuB-
PROGRAM ARGUMENT RESETS THE VALUE 70 ITSELF BUT
RETAINS THE CORRESPONDENCE OF THE ARGUMENT TO
THE CALLING AND CALLED ARGUMENTS,

i
£

bel,

EXAMPLES OF THE USE OF THE FORMAL SYSTEM

TAYLOR EXPANSION

PFORMAL %L IB,FORMAL,IL ELT1,ELT2

OO OO0

RMAP
LIB

RAXQT
10
10
10

THIS PROGRAM GENERATES A TAYLOR EXPANSION IN THE
NE IGHBORHOOD OF Ay FOR A GIVEN FUNCTION FX» WHICH
HAS CONTINUOUS DERIVATIVES UP TO N=TH ORDER

LOGICAL IDENT

"OPTION INT, EXPAND(12) MFCT?
YREAD NyAyFX?

N = IVALUE('N')

A = IVALUE('A")

PRINT 8

YPRINT FX?*

PRINT 9,NsA
"F=REPLACLFX»XeAD®

DO 2 I=1.N

'] = HI(I)?

'FX = DIFCFXoXel]®

IF (IDENT('FX,0%')) STOP

'"FF = FIX[REPLACLFX,XerAJp=81]"
YF=F+1/FACL I % (X=A)x# IxFF?
*PRINT F?

PRINT *(///7//)°

GO TO 1

FORMAT (' THE TAYLOR SERIES EXPANSION FOR THE FUNCTION?')
FORMAT (' OF ORDER®*,I3s%y IN THE NEIGHBORHOOD OF X =',I3)
END

FORMAL %L IB.
0 SINEXT

?
0 % COSCXD
0§ Cx{il=-2%Cxkx2%X)kXx(=1/2) i

CYCLE 00: 09 SEP 70 AT 131:29:22 FORMAL 03:02

C
C
C

THIS PROGRAM GENERATES A TAYLOR EXPANSION IN THE
NE IGHBORHOOD OF Ay FOR A GIVEN FUNCTION FXs WHICH
HAS CONTINUQUS DERIVATIVES UP TO N=TH ORDER
LOGICAL IDENT

TOPTION INT, EXPAND(12),MFCT®

"READ NyAgFX?

N = IVALUE(*N?)

A = IVALUE(vA®)

PRINT 8

"PRINT FX¢

PRINT 9¢NyA

"FzREPLACEFXsXeAT?Y

Do 4 I:lgN

YT = HI(LI)?

"EX = DIFCFXeXedild®

IF (IDENT(*FX.0%)) STOP

'FF = FIXIREPLACIFXsXeAJe=43?
"F=F+1/FACL I Jx(X=A)xxIxFF?

TPRINT F°

PRINT *(////77)°

GO T0O 1

FORMAT (7"1THE TAYLOR SERIES EXPANSION FOR THE FUNCTION?')
FORMAT (' OF ORDER®*;I3,¢*IN THE NEIGHBORHOOD OF X =',13)
END

=2

0 @

PREPROCESSOR OUTPUT ¢

LOGICAL IDENT

CALL FMLOPT(*INT/EXPAND(12)MFCTi 'y 0)

CALL FMLIOL('NsAvFXi*90)

N = IVALUE(*N;50)

A = IVALUE(*A;7,0)

PRINT 8

CALL FMLIO2(*FX:'s0)

PRINT 9sNyA

CALL FMLASG (*F=REPLACLFXsXsAl3150)

DO 2 I=1¢N

CALL FMLAGSG ('I=HI1$%¢1,1)

CALL FMLASG ('FX=DIFIFXsXe135%5s0)

IF (IDENT(*FXs03i'90)) STOP

CALL FMLASG ('FF=FIXIREPLACLFXsXoAJe=415%+0)
CALL FMLASG ('"F=F+I/FACLIdx(X=A)*sxI%FF};%,0)
CALL FMLIO2('Fi'e0)

PRINT (////7)°

GO TO 1

FORMAT (*1THE TAYLOR SERIES EXPANSION FOR THE FUNCTION?')
FORMAT (' OF ORDER*,I3,*IN THE NEIGHBORHOOD OF X =',13)
END

FORMALLIB VERSION 07:09A

THE TAYLOR SERIES EXPANSION FOR THE FUNCTION

FX=

SINC X1

OF ORDER 10s IN THE NEIGHRORHOOD OF X = 0

F=

X = 1/6 % X %% 3 + 17120 % X %% 5 « 1/5040 % X %x 7 + 1/362880 %
X %% 9

THE TAYLOR SERiEs EXPANSION FOR THE FUNCTION

FX=

COosL X3

OF ORDER 10s IN THE NEIGHRORHOOD OF X = 0

F=

1.,00000 = 1/2 % X %%k 2 4 1/724 % X %% U4 = 1/720 * X %% 6 +
1780320 % X %% 8 = 1/3628800 % X %% 10

THE TAYLOR SERIES EXPANSION FOR THE FUNCTION

Fx=

C /7 {1 = 2 % Cxk 2 %) %% {/2

OF ORDER 105 IN THE NEIGHRORHOOD OF X = 0

F= .

C + Cox 3 % X & 3/2 % C % 5§ % X %% 2 ¢ 5/2 %« C %% 7 % X %% 3 +

35/8 % C %% 9 x X %% 4 ¢ 63/8 % C %% §1 % X %% 5 + 231/16 * C *x*
13 % X %% 6 + 429716 % € %% 15 % X %% 7 4+ 64357128 % C %% 17 % X
% 8 4+ 12155/128 % C %% 10 % ¥ &%k 9 & UBIBO/256 % € %% 21 % X %%k
10

UelZa

FACTORING

PFORMAL*L IB,FORMAL s IL ELT1,ELT2

C
C
1

RFOR

eNeNeNeXeNel

sxkx THIS IS THE DUMMY MAIN ROUTINE FOR TESTING THE
xxxkx FACTORING SUBROUTINE,
"READ E?
PRINT *('' THE ORIGINAL EXPRESSION IS *¢)?
PPRINT EY
CALL FACTOR ('E:?')
PRINT *(** THE RESULT AFTER FACTORING IS :'%)!
PPRINT EF
PRINT *(/7///7)°
GO TO 1
END

MAL¥LIB,FORMAL ,IL ELT3,ELTY
THIS ROUTINE FACTORS OUT THE COMMON FACTOR IN AN
EXPRESSION WHICH IS A SUM OF PRODUCTS.
If EXPRESSION 'E¢ IS NOT A SuyMs THEN THE EXPRESSION
'E' WILL BE KETURNED WITHOUT FACTORING.
E = A1+A2+A5+..0+AN = F*(Bl+82+...+BN)
THE CONSTANT FACTOR WILL BE DELETED
SUBROUTINE FACTOR ('F")
"OPTION PRODEXsEXPAND(D)®
*%xk%x IF THE LEAD OPERATOR IS NOT %+°, THEN RETURN
IF (LDOP(*'Ev) .NE, 18) RETURN
'E = EXPANDLED!
YFC = (NUMIL13)/NUMCNUMEIT13I/NUMCC2130)/(DENOMIC11Y/
+ NUMPFDENOML[131/DENOMIL2]1]) !
N = MARG(YE")
¥xxxk TAKE THE FIRST ARGUMENT AS ITS FACTOR
'F = ARGIEs13]*
*xxxk LOOP TO COMPUTE THE COMMON FACTOR OF EXPRESSION E
DO 50 I=2,N
*A = ARGLEnI(I)J®
wxkxx USE THE DEFINED FUNCTION fFC*
'F = FCLF,A]

YFE o= D¢
*akxk DELETE THE CONSTANT FACTOR
BB = F

IF (LDOP('BR*) LEQ, 19) 'RB=ARG[RB,11]¢

IF (LDoP(*BR*) ,G6T., =} GO 7O 100

F o= F/BB¢
xakkk LOOP TO THE REMAINING PART OF THE EXPRESSINN
DO 150 I=1eN

PEF oz FF4(ARGLEHI(IyI/F)?

E o= FaFFe
wxxxx RETURN TO THE CALLIMNG PROGRAM

RETURN

END

OMAP
LIB FORMAL=%LIB.

BXQT ‘
ALxX+A2xX+AZR(AL+A2) %X k%2
2/B3kXEK2+B/ Uk XY hk 2+ kY okrZ+] /2%NXY }
1/72%(X+Y)

4=7

CYCLE 00 ¢ 09 SEP 70 AT 10:¢:30:22 FORMAL 03:02

C
C
1

frne

xiokk THIS IS THE DUMMY MAIN ROUTINE FOR TESTING THE

sxkkx FACTORING SUBROUTINE,
'READ E*
PRINT *(*% THE ORIGINAL EXPRESSION IS
"PRINT E*
CALL FACTOR ('Ej')
PRINT *('* THE RESULT AFTER FACTORING
'PRINT E' o
PRINT *(/////)"
6O TO 1
END

PREPROCESSOR OUTPUT ¢
CALL FMLIOL(*E?%90)
PRINT *(*°* THE ORIGINAL EXPRESSION IS
CALL FMLIO2(*E:%90)
CALL FACTOR (°*E; ")
PRINT *(%% THE RESULT AFTER FACTORING
CALL FMLIO2('E+%90)
PRINT *(/s/7//7)"
GO 7O 1
END

")'

IS :!')'

")'

) § :")'

CYCLE 00 : 09 SEP 70 AT 10:31:45 FORMAL 03:02

OO OO0

-

100
150

THIS ROUTINE FACTORS OUT THE COMMON FACTOR IMN AN
EXPRESSION WHICH IS A SUM OF PRODUCTS.
IF EXPRESSION 'Ef* IS NOT A SUM, THEN THE EXPRESSION
'"F¢ WILL BF RETURNED WITHOUT FACTORING,
E = AL1+AD4A3+40, ,+AN = Fx(B14B2+4,..+BN)
THE CONSTANT FACTOR wILL BE DELETED
SUBROUTINE FACTOR (*'F*%)
"OPTION PRODEXeEXPAND(O)®
sxxxk IF THE LFAD OPEPATOR IS NOT '+'s, THEN RETURN
IF (LDOP(*E*) NE, 1) RETURN
'‘E = EXPANDCE]!
FC = (NUMCTC113/NUMCMUMICL1II/NUMET 2331) /(DENOMEL 131/
+ NUMLCDENOMLT 13I/DENOMIC 2330
N = NARG(*E")
sukxkx TAKE THE FIRST ARGUMENT AS ITS FACTOR
YF o= ARGLE»1]
*%x%kx LOOP TO COMPUTE THE COMMON FACTOR OF EXPRESSION E
DO 50 I=2,N
A = ARGLEHI(I)]?
sx%x%x USE THE DEFINED FUNCTION *FC*
'F = FCLF,AT]Y

'FF = 0
sxkxk NELETE THE CONSTANT FACTOR
'BB = F°*

IF (LDOP(*Bi3*) ,EQ, 19) 'BBz=ARG[RB,1]°'

IF (LDoP(*B3*) 6T, 2) GO TO 100

'F = F/RRe
s¥xxx LLOOP TO THE REMAINING PART OF THE EXPRESSION
DO 150 I=1+¢H

'FF = FF+(ARGLEHI(I)I/F)

YE = FxFF?®
*xxxk RETURN TO THE CALLING PROGRAM

RETURN

END

100
150

PREPROCESSOR OUTPUT ¢

SUBROUTINE FACTOR (x)

CALL FMLEQU(1,'E)

CALL FMLOPT(*PRODEX,EXPAND (D)3 0)

IF (LDOP(*E;*y0) «NE, 18) RETURN

CALL FMLASG ('EzEXPANDLEI; ', 0)

CALL FMLASG (*'FC=(NUMIT1JI/NUMINUMIL131I/NUML[2]1])/(DENOM
+0C 1 JI/NUML DENOML L 1 31/DENOMCLE231Y)3%,0)

N = NARG('E; *,0)

CALL FMLASG ('F=ARGLEr11:'¢0)

DO 50 I=2¢N

CALL FMLASG ('A=ARGLE HI1Ji's1s(1))

CALL FMLASG ('F=FCLF.AJ;'4+0)

CALL FMLASG ('FF=0;"',0)

CALL FMLASG ('BBz=F;',0)

IF (LDOP(*'*BB3'»0) .E0e 19) CALL FMLASG ('BB=ARGIBB,113:'+0)
IF (LDOP(*BR;'+0) GTe 3) GO TO 100

CALL FMLASG ('FzF/BB;'»0)

DO 150 I=1+N

CALL FMLASG ('FF=FF+(ARGLEHILI/F); %1, (1))
CALL FMLASG ('E=Fx%FF;',0)

RETURN

END

FORMALLIB VERSION (07:09A

THE ORIGINAL EXPRESSION IS
E= »
Al % X + A2 % X + A3 % X x* 2 % (Al + A2)

THE RESULT AFTER FACTORING IS5 ¢
Ex
X % (Al + A2 + A1 % A3 % X + A2 x A3 % X)

THE ORIGINAL EXPRESSION 15
E=
172 % X % Y + 3/4 % X % Y %% 2 + 2/3 % X %% 2 + U4 % X %% 3

THE RESULT AFTER FACTORING Is ¢
Ez
X ok (2/3 %= X + 1/2 2 Y 4+ 4 % X %% 2 ¢ 374 % Y %% 2)

THE ORIGINAL EXPRESSION IS
E=
172 % (X 4+ Y)

THE RESULT AFTER -FACTORING Is5 @
E=
172 % (X + Y)

S INTERACTIVE FORMAL SYSTEM

A SUBSET OF THE FORMAL LANGUAGE IS AVAILABLE AS AN INTERACTIVE
SYSTEM FROM TELETYPE. IN THIS SUBSET, THERE ARE NO FORTRAN TYPE
STATEMENTS AVAILABLE» THUS FORTRAN=TYPE CONSTANTS IN FORMAL STATE-
MENTS ARE ALSO NOT AVAILABLE. THE AVAILABLE STATEMENTS ARE AS
FOLLOWS:

OPTION

ERASE

ASSIGN

PRINT

COMMENT

NCOUNT

RoOLOUT

SAVE

RESET

THESE STATEMENTS SHOULD % N O T % BE ENCLOSED IN APOSTROPHES

CONTRARY TO THE FORMAL SYSTEM DESCRIBED IN CHAPTER 3. THE TYPE OF
THE STATEMENT IS DETERMINED EITHER BY THE FIRST 2 OR THE FIRST 6
CHARACTERS TYPED ON A LINE. WITH & INDICATING A SPACE, THESE FORMS
ARE AS FOLLOWS:

CA COMMENT STATEMENT
COMMEN COMMENT STATEMENT
PA PRINT STATEMEMT

PRINTA PRINT STATEMENT

OPTION OPTION STATEMENT

ERASEA ERASE STATEMENT

NCOUNT IT GIVES THE NUMBER OF AVAILABLE CORE LOCATIONS

ROL.OUT

SAVEAaA SAVE STATEMENT

RESETa RESET S« "TEMENT

WHENEVER A TYPED=-IN LINE DOES NOT HAVE ONE OF THE ABOVE FORMS»
THE SYSTEM AUTOMATICALLY ASSUMES THAT IT IS AN ASSIGN STATEMENT.
ERROR MESSAGES ARE GIVEN WHEN THE STATEMENTS ARE SYNTACTICALLY
INCORRECT.

AT THE PRESENT,; THE STATEMENTS ARE RESTRICTED TO ONE STATEMENT
PER LINE. WHEN A LINE IS TYPED, AND THE CARRIAGE RETURN IS PUSHED,
THE LINE IS ACCEPTED AS A STATEMENT AND EXECUTED. BEFORE EXECU=-
TION: THE STATEMENT IS REPRINTED TO PROVIDE A LISTING WITHOUT THE
CORRECTION ARROWS WHICH MIGHT POSSIBLY BE EMPLOYED IN THE INPUT
IMAGE. THE OPTIONe, ERASE, AND ASSIGN STATEMENTS ARE THE SAME
SYNTACTICLY AND SEMANTICLY AS THE CORRESPONDING STATEMENTS IN
CHAPTER 2, THE COMMENT STATEMENT CORRESPONDS TO THE FORTRAN
COMMENT STATEMENT, THE PRINT STATEMENT CORRESPONDS TO THE FORMAL
OUTPUT STATEMENT WITH FIXED FORMAT:; IT MUSY BE FOLLOWED By A LIST
OF VARIABLES, THE SYSTEM PRINTS OUT THE VARIABLES FOLLOWED BY
FEQUAL SIGNS AND THEIR EXPRESSION VALUES. THE VARIABLES AND THEIR
EXPRESSIONS ALWAYS START ON A NEW LINE IN COLUMN 2, WHEN AN

F=2

EXPRESSION IS LONGER THAN ONE LINE, IT IS CONTINUED ON A NEW LINE
STARTING IN COLUMN 2.

THE INTERACTIVE FORMAL SYSTEM CAN BE ACCESSED FROM THE SYSTEM
BY

PRUN ID¢ITI=JJ=KKK,JOHN=DOE
AXQT FORMALxLIB.FML

EXEC 8 CONTROL LINES» AND ITS USE IS TERMINATED BY ANY EXEC 8
CONTROL LINEs, I,E. R IN COLUMN 1,

IF A SET OF FORMAL STATEMENTS MUST BE EXECUTED A MUMBER OF
TIMESes THEN THE FOLLOWING PROCEDURES CAN BE UTILIZED TO SAVE A
CONSIDERABLE AMOUNT OF TEDIOUS TYPING , FIRST, A SYMBOLIC ELEMENT
CALLED *LOOP' SHOULD BE CREATED BY *RELT:S LOOP' WHICH IS THEN
FOLLOWED BY THE SET OF FORMAL STATEMENTS, AFTER ALL STATEMENTS ARE
TYPED IN, TERMINATE THE ELFMENT PROCESSOR BY TYPING IN MASTER
CONTROL *@* IN THE FIRST COLUMN. SECOND, TO UTILIZE THIS 'LOOP'
ELEMENT SIMPLY TYPE IN 'QADD LOOP' WHEREVER THIS SET OF INSTRUC-
TIONS IS NEEDED, SEE EXAMPLE 2 IN SECTION 6.2,

& EXAMPLES OF THE INTERACTIVE FORMAL SYSTEM

6ol EXAMPLE 1

@RUN ID,000-00=000/JOE

@XQT FORMAL%LIB.FML
FORMALLIB VERSION 05.05
THE ABOVE STATEMENT INDICATES WHICH VERSION IS WORKING
NOW ¢
THIS EXAMPLE USES FEATURES OF SOME FORMAL STATEMENTS

INDUCTION, FIRSTe TEST TO SEE IF THE EQUATION HOLDS

THE EQUATION IS TRUE FOR ALL INTEGERS LESS THAN OR
EQUAL TO N, THEN PROCEED TO SHOW THAT THE EQUATION IS
TRUE FOR INTEGER N+i, ACCORDING TO THE EQUATION AND
SUBSTITUTION OF N+1 FOR Np 'SUMIt=(1=Z%¥N+1)/(1=2)}
BY THE ASSUMPTION AND THE DEFINITION OF THE SUMMATION
WE KNOW THAT 'SUMi'=SN+X#xN, THE OBJECTIVE IS THEN
TO SHOW THAT *SUMit IS IDENTICAL TO 'SuUM2' BY TAKING
THEIR DIFFERENCE,

OO0

OPTION EXPAND{G)
OPTION: EXPAND(O)
SN = (1=XxxN})/{i=X)
SN = (i=XxaN}/{1=X}
TESTI = SUBSTESNeNs1]
TESTL = SUBSTLSN;Ne13
PRINT TESTH
TESTIi=
1
C
SUMI = SUBSTESNeN,N+1]
SUML = SUBSTLGSNeNeN+1]

PRINT SuUMi1
SUMi=
(1 = 1 % X xx (1 + N} J % {1=1=%X}) x% { =1)

SUMZ = SN+ XxsN
SUMZ2 = SN Hsoxh
PRINT Sumz
SUMZ=
(i = 1 & Yo N} % {1 = & % Xy m® (=1} 4 X %% N

TO PROVE THE EQUATION FOR THE SUM OF GEOMETRIC SERIES,
I.Es SUM OF (Xxx(I=1})) = (1=Xx%xN)/{(1=X) FOR I=1reeeeN
LET °SN' BE THE SuM AND TRY TO PROVE IT BY MATHEMATICAL

FOR N=f,(I.E. THE SUM %GN'=1) IF IT IS SOs» THEN ASSUME

6=2

PROOF = SUM1-SUM2

PROOF = SUM1-SUM2

PRINT PROOF

PROOF = |
=1 % (1 =1 %X ®xN) % (1 =1%X) *k (=1) + X *x M)
01 = 1 % X Rk (1 4+ N)D) % (1 =1 %X) skt (=1)

SINCE 'PROOF' IS NOT ZERO, LET'S PUT IT IN THE COMMON
DENOMINATOR FORM,

OO0

ExAM = EXPAND[PROOF1

EXAM = EXPANDI[PROOF]

PRINT EXAM

EXAM=

[= 1 % (1 = 1 % X) % X %k N + X %k N =1 % X *xx (1 + N})

* (1 = 1 % X) %k { =1)

ZERO = EXPANDLNUMLEXAMI11/DENOMCEXAM]
ZERO = EXPANDLNUMIEXAMI1/DENOMI EXAM)]
PRINT ZERO

ZERO=

0

Gelo EXAMPLE 2

THIS EXAMPLE SHOWS HOW TO GENERATE A SET OF ORTHOGONAL PO=
LYNOMIALS BY ITS RECURSIVE DEFINITION ¢

P(N+1) = (ACNIAX+BLNI)#P(N)=CCNI*P(N=1) WHERE THE VALUE OF
P(N)es A SUBSCRIPTED VARIABLE, IS THE N®TH DEGREE POLYNOMIAL IN
Xe ALNI1s BINJe CICNI AS FUNCTIONS WITH ARGUMENT Ns CORRESPOND TO
THE COEFFICIENTS IN THE RECURSIVE FORMULA, TO AVOID THE TEDIOUS
WORK OF TYPING THE ABOVE FORMULA REPEATEDLY BY INCREMENTING N
AND PRINTING OUT P(N), WE DEFINE AN ELEMENT NAMED 'LOOP®' AS
FOLLOWS: ¢

RELT, IS i_00P

PIN+L) = (ALNI&X+BINIIRP(Ny=CLNIxP(N=1)
N = N+1

PRINT P{N)

®

THIS WAY WE ARE ABLE TO USE

RADD LOOP
INSTEAD OF TYPING IN THE ABOVE 3 FORMAL STATEMENTS.
E S k& ok ok ok %k B ok ok & %k %k ok %k % ¥ k& ¥k %
NOW WE CALL f‘FORMAL*LIB.FML®' TO GENERATE THE LEGENDRE POLYNOMIA-
LSe

PXQT FORMAL %L IB,FML .

FORMALL.IB VERSION 05.05
OPTION EXPAND(10)
OPTION: EXPAND(LO)

C

C FIRST INITIALIZE P(0Y,P(1)
C .

P(0) = 1

P(o) = 1

P{1} = X

P{iy = X

C
- C NOW DEFINE THE FUNCTION AsByAND C FOR LEGENDRE POLY~
C NOMIAL, USE °*RADD LOOP* REPEATEDLY TO OBTAIN THE
C CONSECUTIVE POLYNOMIALS,

C
A

= (2x011+13 /(013410
= (20 13+1) /(0 13+1)

=4

BADD LO0OP

P(N+1} = (A[CNIxX4BINI)%P(NJ=CLNIxP{N=1}
N = N+1

P (2) =

1/2 % 3/2 % X %% 2

@ADD LOOP

P{N+1) = {(AINI*X4BIN])%P(N)=C[NI%P(N=1)
N = N+1i

P (3) =

3/2 % X + 5/2 % X %% 3
WADD LOOP

P(N+1) = (AILNJI&«X4+BINI)%P(N)=CLNI%P(N=1)
N = N+1
P (4) =

3/8 = 15/4 % X *x 2 + 35/8 % X *xx 4
RADD LOOP
P(N+1) = (ACNJI«X+BINI1)%P{(N)=C[NI*P(N=1)
N = N+i
P (5) =
15/8 % X = 35/4 % X %% 3 4+ 63/8 % X %% §
RADD LOoOP
P(N+1) = (ACNI&X+BINI)%P(M)=C[NI*xP(N=1)
N = MN+i
P (6) =
5716 + 105/16 % X %% 2 = 315/16 * X *%x 4 + 231/16 * X %% ©
RADD LOOP
P(N+1) = (ALNJIX+BINI)Y %P (N)=CINJI*P(N=1)
N = N+1
P (7)) =
35/16 * X + 315/16 % X %% 3 = £O3/16 % X %% 5 + L29/16 % X %%
- .

RADD LLOOP

P(N+1) = (AINIxX4+BINI1)%P(N)=CLNI*P(N=1)
N = N+i

P (8) =

357128 = 315/32 x X %% 2 4+ 3465/64 % X k% 4 = 3003/32 % X *x 6 +
6U35/128 x X %% 8

RADD LOOP

P(M+1) = (AINJI*X+BINIY*P(N}=CINIxP(N=1)
N = N+1

P (9) =

3157128 % X « 1155/32 % X *% 3 + 9009/64 *x X *¥ 5 = H435/32 % X
¥k 7+ 12155/128 % X %% G

RADD LOOP
P{N+1} = (ACNIxX+BINII %P (N} =CTNIxP(N=1}
N = N+i
Porioy =z

637256 + 3465/256 % X k¥ 2 = 15015/128 % X ¥k 4 + 450457128 *
X x%x 6 = 109395/256 % X %% 8 + U6189/256 % X *x 10

Bede EXAMPLE 3

THIS EXAMPLE TAKEN FROM HOME WORK PROBLEMS OF FRESHMEN CALCULUS
COURSE, SHOWS THE SIMPLICITY OF THE FORMAL PROGRAM IN SOLVING
PARTIAL DERIVATIVES AND IN EVALUATING THEM AT A GIVEN POINT.
THIS EXAMPLE PERFORMS SEVERAL SUBTASKS, ONE OF THESE IS TO PROVE
AT%%2 / APAA = aT%%2 / AARLAP

RXQT FORMAL %L IB,FML
FORMALLIB VERSION 05,07
OPTION EXPAND(10)
OPTION: EXPAND(10)
¥ = PxCOSLA]
X = P%COS[A]
Y = P%SINLCAJ]
Y = PxSINCAJ]
T = XkkFeXu¥+YV%%3
T = KkkFoY kY4 Y k%3
DP = DIFLT:Pel]
Dp = DIFLTePs13
PRINT DP
Dp=
3 %« (P % SIN[AI) =#*%x 2 % GIN[A] + 3 % (P % COS (Al) =xx 2
* COS [TA]l = 2 % P % SIN [A] % COS [A]
C
Vi = SUBSTEDPsA,3, 1416741
Vi = SUBSTIDPeAe3,1416/0]
PRINT Vi
Viz
= 1.00000 %« P + 2,12132 % (,70711 % P) % 2 + 2,12132 x%
(., 70711 % Py =% 2
C .
DPA = DIFLIDPsAs1]
DrA = DIFEDPsA:13
FRINT DPA
DpAz
2 % P & SIN[AT %% 2 = 2 % P x COS [A] %% 2 + 3 x (P x SIN
[AT Y %%k 2 % COs TAl = 3 % (P % COS [AJ } *%x 2 % SIN[A] +
6 ok P oxx 2 % SIN[A] %% 2 % COS [A] = 6 % P %% 2 % COS [A] %%
2 % SINTCA]
C
0A = DIFCTsAs1]
DA = DIFCTeAs1]

PRINT DA

DAz

Pogw 2ok SINFAT %% 2 = § % P % 2 % C0S [AT =%k 2 + 3 % P x%
(P % SINTAT Y =% 2 % COS TAT = 3 = P x (P % C05 (AT Y %% 2

SIN [A]
C

V2 = SUBSTIDA;A:;3,1u416/7041
V2 = SUBSTIDAAr3,1416/4]
PRINT V2
Vex= .
w 2,12132 % P % (,70711 %P) %% 2 4 2,12132 % P %* (.70711 *
Py %% 2 + 00000 * P %% 2
C
DAP = DIFLDA,Ps11
DAP = DIFCDA,P,11
PRINT DAP
DAP= .
2 %x P % SIN TA] %% 2 = 2 ¥ P % COS [A1 xx 2 + 3 * (P % SIN
[AT) #x 2 %x COS [A]) = 3 %x (P % COS [A)) *x 2 % SIN [A] +
6 % P %% 2 % SIN [AT %% 2 % COS [A] = 6 % P %% 2 % COS [A] *%
2 % SIN [A]
C
V3 = SUBSTEDPA/A»3,1416/4]
V3 = SUBSTIDPA,A,3,1u4i16/4]
PRINT V3
V3=
000001 *x P ¢+ 000001 * P **2 - 2012132 * (.70711 * P) ¥ 2 +
2,12132 = (70711 % P) sk 2
C
EQUAL = DPA=DAP
EQUAL = DPA=DAP
PRINT FQUAL
EQUAL=
0
C
DP3 = DIFLT.Ps3]
DP3 = DIF[T+P:y3]
DP3DA3 = DIFLDP3¢A»3]
DP3DA3 = DIFLDP3;As31]
PRINT DP3DA3
DP3DA3= ,
= 126 % SIN [A] %% 2 COS [AJ + 126 * COS LAY %% 2 % SIN
LAl = 36 % SIN [A] %% 3 + 36 x COS [A]) %% 3
C
V4 = SUBSTCDR3DA3,As3.1416/4]
v = SUBSTILDP3DA3sAe3.1416/41
PRINT V4
Viz
«- 00030

7=1

7o ERROR MESSAGES

ANY ERROR OCCURING DURING THE EXCUTION OF A FORMAL PROGRAM
TERMINATES THE EXCUTION BY PRINTING OUT AN APPROPRIATE ERROR
MESSAGE WITH ONE OF THE FOLLOWING FORMS:

£1 == 'MESSAGE?
E2 == $'MESSAGE?
E3 == 'MESSAGE!

Eis E2s E3 CORRESPOND TO THREE TYPES OF ERRORS INDICATING THE
NECESSARY CORRECTIONS TO BF MADE, TOGETHER WITH THE DIFFERENT
MESSAGES,

E1 ¢ THE STATEMENT CAUSING THE ERROR MUST BE CORRECTED.
IT USUALLY CORRESPONDS TO A SYNTACTIC ERRORs AS STATED
IN THE MESSAGE., IN THE INTERACTIVE FORMAL SYSTEM, IT
CAN BE CORRECTED BY TYPING THE CORECT STATEMENT,

EXAMPLE 2 A = SUBSTL X+Y»XyY)
THIS STATEMENT CAUSES THE FOLLOWING ERROR
MESSAGE T0 BE PRINTED.

El == DOES NOT MATCH THE LEFT SIDE)

THE PROCESS OF THE LAST STATEMENT EXHAUSTED THE AVAI-
LABLE WORKING STORAGE, IT CAN BE CORRECTED BY USING A
FORMAL *ERASE! STATEMENT PRIOR TO THE LAST INDICATED
STATEMENT. IN THE INTERACTIVE FORMAL SYSTEMs IT CAN BE
CORRECTED BY TYPING IN AN *ERASE® STATEMENT WITH
APPROPRIATE PARAMETERS BEFORE TYPING IN THE LAST
STATEMENT.

E2

THE ExXECLTION OF THE LASYT STATEMENT CAUSES AN UNRECO=-
VERABLE ERROR. IN THIS CASE THE PROGRAM USUALLY CAN
NOT EASILY BE CORRECTED,

E3

°o

8o SYNTAX OF FORMAL STATEMENTS

IN THIS CHAPTER, THE SYNTACTIC RULES OF THE FORMAL STATEMENTS
ARE PRESENTED IN BACKUS NORMAL FORM, THE LIMITATION OF THIS FORM
REQUIRES SOME EXPLANATIONS WHICH ARE GIVEN SEMANTICALLY. THE
FOLLOWING SYNTACTIC VARIABLES ARE USED WITHOUT FURTHER EXPLANA-
TION:

<ID>::= IDENTIFIER CONSISTING OF NOT MORE THAN 6 ALPHANUMERIC
CHARACTERS OF WHICH THE FIRST ONE IS A LETTER,

<I>::= DECIMAL INTEGER

<R>:i= DECIMAL REAL NUMBER

<FNINT>::= FORTRAN ARITHMETIC EXPRESSION GIVING AN INTEGER

<FNREAL>::= FORTRAN ARITHMETIC EXPRESSION GIVING A REAL

NUMBER

Boloaloe FORMAL CONSTANTS AND VARIABLES,

<F=CONSTANT>::= <F=INT> \ <F=REAL>
<F=INT>:iz <I> \ HI(KFNINT>)
<F=REAL>::= <R> \ HR(<FNREAL>)
<F=VBLE>! iz (F=SIMPLE=-V> \ <F=SUBSC=V>
F=SIMPLE=V>::= <ID>
<F=SUBSC=y>: = <ID>(KSUBS,LIST>)
CSUBS.LIST>1:= <L I3 N <KLoI>e<b I> N\ <L I>e<lID>p<baI> N\
CLoIdpdl Ide<l I>o<L.1I>
LelI>iiz <F=INT> \ <F=EXPR> SUCH THAT

ITS VALUE I5 AN INTEGER BETWEEN 0 AND 511,

Bele20 FORMAL EXPRESSIONS,

ALGEBRAIC EXPRESSIONS
CF=EXPR>:t= <F=SUM> \ +<{F=SUM> \ =<F=5UM>
KF=SUM>::= <F=TERM> \ <F=SUM> + <F-=TERM> \
CF=SUM> = <F=TERM>
CF=TERM>: 3= <F=FACTOR> \ <F=TERM>%<F=FACTOR> \
| {F=TERM>/<F=FACTOR>
<F=FACTOR>::= <F=PRIME> \ <(F=FACTOR>#*%<F=PRIMED>
(F=PRIME>::= <F=CONSTANT> \ <F=yBLE> \ <F=FCT> \

{<F=EXPR>)

FUNCTION DEFINING EXPRESSIONS
CF=D=EXPRY !z <F=D=SUM> \ +<F=D=SUM> \ =<F=D=SUM>
(F=D=SUM>: 2= <F=D=TERM> \ <F=D=SUM>+<F=D=TERM> \
CF=D=SUM>=<F=D=TERM>
CF=D=TERM>: .= <F=N=FACTOR> \ <F=D=TERM>*<F=D~FACTOR> \
{F=D=TERM>/<LF=D=FACTOR>
CF=D=FACTOR>: iz <F=D=PRIME> \ <F=D=FACTOR>*%<{F=D=PRIMED>
{F=D=PRIME>::= <F=CONSTANT> \ <F=VBLE> \ <F=FCT> \
(<F=D=EXPR>) \ <ARG,IND>
ARG IND» = [<P.12]
<P Itz LI5 SUCH THAT ITS VALUE IS BETWEEN
0 AND 20,

CF=N=EXPRY MUST CONTAIN AT LEAST ONE <ARG,IND>.

Belede

FORMAL FUNCTIONAL EXPRESSIONS,

CF=FCT>::= <F=MATH> \ <F-SPECIAL> \ <F=DIFF> \ <F-DEF> \
<F=-UNDEF>
CF=MATH>$:= <MI1>[SF=EXPR>] \ <M2>[<F=EXPR>s<F-EXPR>] \
<M3>L <F=EXPR> » <F=EXPR> s <F=EXPR> 1
<M1>:t= EXP \ LOG \ TNH \ SIN \ COS \ ATN \ FAC
<M2>t = BIN
<M3>1t= STEP
CF=SPECIAL>::= <SI>[<F=EXPR>J \ COEFFL <F=EXPR>s<F=EXPR=5>1 \
ARGL <F=EXPR> /<P I>1 \ <S2>[<F=EXPR> s <F=CONST>]
<S5 <F=EXPR> <PAIRS>]
¢S1>::= EXPAND \ CODEM \ NUM \ DENOM \ EXPON \ BASE
FLOAT \ FLOATB \ LDOP \ NARG
<52>1:= FIX \ FIXF
CF=EXPR=S>::1= <F=FXPR> SUCH THAT IT IS NOT A SUM
<S5>:1= SUBST \ REPLAC
CPAIRS>::= <PAIR> \ <PAIRS>,<PAIR>
CPAIR>::= <F=EXPR>¢<F=EXPR>
KF=DIFF>::= DIFLKF=EXPR>,<F=VBLE> <P, I>1
CF=UNDEF>:t= <F=ID>[<ARG-LIST=7>]
<F=DEF>:1= <F=ID>[<ARG=LIST=20>1
CARG=LIST=K>::z <F=EXPR> \ <F=EXPR>s<F=EXPR> \ ...
MAXIMUM K

CF=1D>::= <IL> N\ <ID>(LSURSLIST>)

8=4

Belethe FORMAL ASSIGN STATEMENT,

KF=ASSIGND Stz <F=ASG> \ (F=L=ASG> \ <F=D=ASG>
<F=ASG>: iz <F=VBLE>=<F=EXPR>
CF=L=ASG>: 3= <F=L=VBLE> = <F=EXPR>¢<F=~EXPR> \
<F=L=ASG> » <F=EXPR> \
<F=L=VBLE>::= <F-VvBLE>

<F=D=ASG>::= <F=ID>=<F=D=EXPR>
Belobo I/0 STATEMENTS,

<F=READ>::= READ(LP,I>)<VBLE LIST>
<F=WRITE>:¢= WRITE(LKP,I> <P,I>e<P,I>)<KVBLE LIST>
<VBLE LIST>::= <F=VBLE> \ <F=ID> \ <VBLE LIST>,<F=VBLE> \
<VBLE LIST>,<F=1D> »
INPUT BY THE READ STATEMENT MUST HAVE THE FOLLOWING FORM:

<INPUTY>: iz <F=EXPR>; \ <F=D=EXPR>: \ <INPUT><F=EXPR>; \
<INPUT>LF=D=EXPR>};

Belebo OPTION STATEMENT

F=OPTION>::= OPTION <OPT.LIST>»

COPTLIST> iz <OPT.TERM> N\ <OPT.LIST>¢<OPT.TERM>

COPT,TERM>» ez INT N NOINT N MFCT N NOMFCT N

PRODEX N\ NOPREX \

BeleTe

Be1.8e

8ele9e

=5

BASE(G) \ BASE(2) N\ BASE{10) \ BASE(E) \

EXPAND (<P, I>)
ERASE STATEMENT.
CF=ERASE>::= ERASE <VBLE LIST>
DUMP STATEMENT,

<F=DUMP>:¢= DUMP SYMBOLS \ DUMP ALL SYMBOLS \

DUMP EXPRESSIONS \ DUMP ALL EXPRESSIONS
ROLOUT» SAVE AMD RESET STATEMENTS.

<ROLL=0UT>¢ ¢= ROLOUT <VBLE LIST>
<SAVE>:s= SAVE <FILE 1D>
<RESET>::=z RESET <FILE 1D>
<FILE ID>:t= o<ELT ID> \ <FILE NAME> ., <ELT ID>

<ELT ID>::= <ELT NAME> \ <ELT NAME> / <VERS NAME>

8.1.,10, FORMAL STATEMENTS,

<F=STATEMENT>:!= f<F=TYPE>* N\ <LABEL> ¢ <F-TYPE> °*

F=TYPE>: iz <F=ASSIGN> \ <F=READ> \ <F=WRITE> \

Belolls

CF=0OPTIONS \ <F=FRASE> \ <F=DUMP> X\

KROLL=0UT> \ <SAVE> \ <RESET>

FORTRAN VALUED FUNCTIONS,

CFNFCT>2e= LDOP('<F=FXPR>') \ NARG('<F=EXPR>") \

IVALUE('<F=EXPR>') \ VALUE('<F=EXPR>")

IDENT (' <F=EXPR>y <F=EXPR>*) \ NCOUNT(0)

\

9. INTERNAL REPRESENTATION OF EXPRESSIONS

THE GENERATED SYMBOLIC ALGEBRAIC EXPRESSIONS ARE REPRESENTED
IN LINEAR ARRAYS. EACH ITEM OF AN EXPRESSION OCCUPIES ONE ENTRY IN
THE ARRAY WHICH Is REFERENCED AS A PAIR OF WORDSe. C=Ds, OR IN
INDEXED FORMy C(I)=D(I). THERE ARE TWO EXCEPTIONS TO THIS RULE:?
THE RATIONAL CONSTANTS OCCUPY TWO CONSECUTIVE PAIRS WHERE THE
FIRST PAIR IS USED FOR THE NUMERATOR AND THE SECOND PAIR FOR THE
DENOMINATOR. THE SUBSCRIPTED VARIABLES ALSO USE TWO CONSECUTIVE
PAIRS, THE FIRST PAIR IS FOR THE NAME OF THE VARIABLE, THE SECOND
PAIR IS FOR THE SUBSCRIPTS,

THE EXPRESSIONS STORED IN THESE LINEAR ARRAYS ARE IN PREFIX
NOTATION WHICH IS DECRIBED IN SECTION 9.2, THE MINUS AND DIVIDE
OPERATORS ARE NOT REPRESENTED INTERNALLY; THE EQUIVALENT FORMS ARE
DESCRIBED IN SECTION 9.1, TO ACHIEVE UNIQUE REPRESENTATION OF
IDENTICAL EXPRESSIONS, AN CORDERING IS IMPOSED ON THE ARGUMENTS OF
SYMMETRIC OPERATORS; THIS 1S DESCRIBED IN SECTION 9,3, SECTION 9.4
DESCRIBES THE DEFINITIONS USED FOR THE FORMAL FUNCTIONS BASED ON
THE INTERNAL REPRESENTATIOM OF EXPRESSIONSs E.G. THE NUMERATOR OF
AN EXPRESSION, SECTION 9,5, DESCRIBES THE SIMPLIFICATIONS ACHIE-
VED WITH THE OPERATIONS OF EXPRESSIONS BASED ON THEIR INTERNAL
REPRESENTATION,

9.1, TRANSFORMING MINUS AND DIVIDE OPERATORS

LET E,E1+E2 REPRESENT ARBITRARY EXPRESSIONS, THE FOLLOWING
TRANSFORMATIONS ARE USED TO DELETE THE UNARY PLUS, MINUS, AND
DIVIDE OPERATORS:

+£ => E (UNARY +)
=E => (=11xE (UNARY =)
Ei=E2 => Ei1+(=1)xE2 (BINARY =)
E1/E2 => EixE2*x(=1) (BINARY /)

THESE TRANSFORMATIONS ARE APPLIED AUTOMATICALLY DURING THE INFIX
TO PREFIX TRANSFORMATION,

9.2, EXPRESSIONS IN PREFIX NOTATION

THE PREFIX NOTATION OF ALGEBRAIC EXPRESSIONS IS CHARACTERIZED

Q=2

BY THE FACT THAT THE OPERATORS PRECEDE THEIR ARGUMENTS, THUS THE
THREE BASIC ARITHMETIC OPERATORS = ADD, MULTIPLYs, AND EXPONENTIA=
LIZE = AS BINARY OPERATORS WITH ARGUMENTS A AND B ARE AS FOLLOWS:

INFIX: PREFIX:
A+ B + A B
A x B * A B
A xx B % A B

IN THE ABOVE EXAMPLESs ALL OPERATORS WERE BINARY OPERATORS. FOR
GENERAL SPECIFICATION, WE MUST ESTABLISH THE FOLLOWING NOTATION:

LET
CoCLlsC2rc0esCK REPRESENT CONSTANTS
VeVieV2re60s VL VARIABLES
EvELvE2reecrEM EXPRESSTIONS
FINJoFL1(N}vooo OPERATORS OR FUNCTIONS WITH N ARGUMENTS.

FURTHERMORE, LET A PERIOD BE USED FOR THE SEPARATION OF SYMBOLS,
EQGG

+{3).V1ieV2,V3
CORRESPONDS TO THE SUM OF THE 3 VARIABLES VieV2 AND V3,

GENERALLY» THE RECURSIVE DEFINITION OF AN EXPRESSION IS AS
FOLLOWS:S

m
il
O

" o

™
<

O
E e = F(N)oEIoEZeoeeaEN (N:I.OZ'...)

e

THE FIRST ITEM OF AN EXPRESSION IN PREFIX FORM IS CALLED THE
LEAD OPERATOR,

eI ORDERING

THE TWO ARITHMETIC OPERATORS, + AND %, ARE SYMMETRIC OPERATORS,
1.E, FEL+E2=E24FE1 AND E1xEP=E2#E1, THIS CAUSES A NON=UNIQUE REPRE-
SENTATION OF OTHERWISE IDENTICAL EXPRESSIONS, FOR THE SOLUTION OF
THIS PROBLEM, AN ORDERING IS IMPOSED ON THE EXPRESSIONS, THIS
ORDERING IS DEFINED ON THE PREFIX FORM OF THE EXPRESSIONS, AND IT

9=3

15 APPLIED FOR THE ORDERING OF ARGUMENTS OF THE SYMMETRIC OPERA=
TORS, + AND =%, THUS, Ei1+4E2.AND EixE2 ARE REPRESENTED IN PREFIX
FORM AS FOLLOWS

+(2)1.EL1.E2 AND 2(2),E1.E2 IF Ei < E2
+(2).E2.E1 AND %(2)E2,.F1 IF E1 > E2
GENERALLY

'*"(N)cElequIeaeEJgOgEN? *(N)QEl...EI.O.E\J.'.EN
IMPLIES EI < EJ FOR I<KJ ¢IsJ=1rese9Ne ONCE THE ORDERING OF
EXPRESSIONS IS ESTABLISHED, THE UNIQUE REPRESENTATION OF EXPRES-
SIONS IS ASSURED.

THE ORDERING OF EXPRESSIONS 1S DONE ACCORDING TO THEIR INTERNAL
BINARY REPRESENTATION, EVERY ITEM OF AN EXPRESSION IS REPRESENTED
BY TWO INTEGER FIELDSe TYPE FIELD, AND DATA FIELDe ITYP(I)s AND
D(1), THE RELATION OF TWO EXPRESSIONS,

El = SlOSZGOGSNB E2 = TloTZQoeTM'
IS DETERMINED BY COMPARING ITS INTERNAL FIELDSe

ITYP(S1).D(S1).ITYP(S2) D(S2)es ITYPISN),DISN) AND
ITYP(TL) D(TL) L ITYP(T2)eD(T2) 6o o ITYP(TN) «D(TN)»

FROM LEFT TO RIGHT, THE FIRST NON=EQUAL FIELD DETERMINES THE
RELATION OF THE EXPRESSIONS. I.E.

ITYP(SY) = ITYP(TJ) AND D(SJ) = D(TJ) FOR J=leeeerK=1

AND ITYP(SK} < ITYP(TK)
IMPLIES £t < E2

OR
ITYP(SU) = ITYP(TJ) AND D(SJ) = D(TJ) FOR J=lreeerK=1
AND ITYP(SKIZITYR(TK) AND D(SK) < D(TK)
IMPLIES E1 < E2,

WHEN ALL FIELDS ARE EQUAL THEN THE TWO EXPRESSIONS ARE IDENTICAL.
SINCE THE TYPE FIELD OF THE FIRST ITEM CORRESPONDS TO THE LEAD
OPERATOR OF AN EXPRESSION, THE PRIMARY SORTING OF THE EXPRESSIONS
IS BY THEIR LEAD OPERATORS.

THE INTERNAL REPRESENTATION OF THE ITEMS OF EXPRESSIONS IS
LISTED IN TABLE I IM APPENDIX A,

Gl

DEFINITION OF FORMAL FUNCTIONS

Ne}
@
=y
@

THIS SECTION DEFINES THE FORMAL FUNCTIONS
(CODEM» COEFF ¢y NUMsDENOMe» EXPON,BASE) BASED ON THE PREFIX REPRESEN=
TATION OF THEIR ARGUMENTS, THE NOTATION USED IS THE SAME AS IN THE
PREVIOUS SECTION» NAMELY

C = FOR CONSTANTS

VvV = FOR VARIABLES

E - FOR EXPRESSIONS

F(N)= FOR OPERATORS, FUNCTIONS WITH N ARGUMENTS

904.15 NUMP DENOM

WHENEVER THE ARGUMENTS OF THESE FUNCTIONS CONTAIN A DUMMY
VARIABLE OF AN UNDEFINED FUNCTION, THEY ARE NOT EVALUATED.,

THE NUM AND DENOM FUNCTIONS GIVE THE NUMERATOR AND DENOMINATOR
OF AN EXPRESSION E» RESPECTIVELY, OBVIOUSLY,

NUMCE] * (DENOMLE Jxx=1) = E

IN INFIX NOTATION, THE DEFINITION OF THE NUMERATOR/DENOMINATOR OF
AN EXPRESSION DEPENDS ON ITS LEAD OPERATOR. LET

E = F(N).EloEZoaeEN
BE THE EXPRESSION, THEN

IF Fog oxpkx I.E. THF EYPRESSION IS NOT A PRODUCT OR EXPONEN=
TIAL EXPRESSION, THEN
NUMLE] = E AND DENOMLEDT = 1

IF F o= %% I.E., THE EXPRESSION IS AN EXPONENTIAL EXPRESSION
WHICH MUST BE IN THE FOLLOWING FORM:
F = %%(2),FEl1.E2
WHERE E1 IS THE BASE AND E2 IS THE EXPONENT., LET
Eo HAVE THE FOLLOWING FORM
E2 = G(M)E21.E22,,.E2M,
THEN HAVE THE EXPONENT E2 SEARCHED FOP NEGATIVE

CONSTANTGS
IF G(MY=C SUCH THAT C<0 THEN
NUMLE 3= DENOMIE I=zEx%(=1)

IF G{M)zx(M)y THEN
IF E21=C SUCH THAT C<0Q THEN

NUMLE J=1 DENOMEE J=E%x (=1)
OTHERWISE
NUMLF J=F DENOMLE I=1

IF G{MI=+ (M} THEN
EzkiM}@mﬁ(g}aEleggla soo okk(2) ,EL.T2M

9=5

AND THE FACTORS FOR THE NUMERATOR/
DENOMINATOR ARE DETERMINED BY THE
PREVIOUS TWo CONDITIONS,

IF F =z x I,E. E IS A PRODUCT, THEN ALL FACTORS
OF Ev ElreoevENe ARE CHECKED FOR
THEIR NUMERATORS AND DENOMINATORS
By THE PREVIOUS CONDITIONS AND
FINALLY?
NUMLE J= *(N) ¢ NUMLEL1 JoNUMLE23Je e s NUMLEN]
DENOMLE 3= %(N) ,DENOMCEL13.,.DENOMLEN]

Telh o254 CODEM
FUNCTION CODEM PUTS THE ARGUMENT EXPRESSION IN COMMON DENOMINA-
TOR FORM, IF THE EXPRESSION IS NOT A SUM, I.E. ITS LEAD OPERATOR
IS NOT +¢+ THEN CODEM DOES NOT CHANGE ITS FORM, WHEN THE EXPRESSION
E IS A SUMy
E = +(N) QEIOEZOQCEN'
THEN THE DENOMINATORS OF THE SUBEXPRESSIONS ARE DETERMINED:
DENOMLEL Js o ¢ o *DENOMLEN]
AFTER DISCARDING THE DENOMINATORS WHICH HAVE VALUES IDENTICAL TO
1, THE LEAST COMMON MULTIPLE 1S DETERMINED AS THE PRODUCT OF
CERTAIN DENOMINATORS FROM THE ABOVE LIST:
ED = %(M) DENOMLEI1]es DENOMLEIM] {MeLEN)

THE DISCARDED DENOMINATORS ARE THOSE FOR WHICH THERE IS ANOTHER
DENOMINATOR WITH THE SAME RASE AND A LARGER EXPONENT» IGE,

DENOMLEL] = x%({2) EL1.EL2

IS DISCARDED IF THERE IS A
DENOMCEIK] = DENOMLEJ] = *x(2).EJ1.EJ2

SUCH THAT
ELL = EJi AMD EITHER EL2=C1 < Ca=EJ2
OR EL2=%(K)+C1,EE2..,EEK AND
EJ2=%(K)«C2,EE2. 4 ,EEK AND
Ci1 < C2

AFTER THE COMMON DENOMINATOR, ED» IS DETERMINED, THE ORIGINAL
EXPRESSION, E, IS MULTIPLIED BY IT TERM BY TERM, AND THE RESULT IS
MULTIPLIED BY THE COMMON DENOMINATOR RAISED TO THE =1 POWER:

DENMOMLE] =

G=6

x{2Y s+ {N})ex {2} @Elegﬁae@*égé aEN‘ryED@ﬁ*{Z) eEle=1
Gelhe3o EXPON, BASE
WHENEVER THE ARGUMENTS oF THESE FUNCTIONS CONTAIN A DUMMY
VARIABLE OF AN DEFINED FUNCTION, THEY ARE NOT EVALUATED.
FUNCTIONS EXPON AND BASF RETURN THE EXPONENT OR BASE OF AN
EXPRESSION Es RESPECTIVELY. WHEN THE LEAD OPERATOR OF E IS NOT AN
EXPONENTIAL OPERATOR, THEN EXPONLFEI=1 AND BASELEJI=F. WHEN THE
LEAD OPERATOR OF E IS %%y F = #%x(2)Y.E1.,E2, THEN EXPONLEI=E2s
BASE[E 1=E1,
Belbols COEFF
WHENEVER THE ARGUMENT OF THIS FUNCTION CONTAINS A DUMMY
VARIABLE ON A DEFINED FUNCTION, IT IS NOT EVALUATED.
COEFFILEL,E2] RETURNS THE COEFFICIENT OF THE EXPRESSION OF £2 IN
Ei, E2 MUST BE EITHER A VARIABLE OR AN EXPRESSION WITH LEAD
OPERATOR =%, MATHEMATICAL, DIFFEFRENTIAL» OR UNDEFINED FUNCTION,
i1.FE. E2 MAY NOT BE A CONSTANT, SUM OR PRODUCT.
THERE ARE 3 CASES DEPENDING ON THE LEAD OPERATOR OF E1:

1. E1 IS NEITHER A SUM NOR A PRODUCTs 1.E., THE LEAD OPERATOR OF E1
IS NEITHER + NOR %, THENS?

COEFFLEL1,E2] = 1 IF El=zE2
COEFFLEL1.,E2] = 0 IF E1fE2

2. E1 IS A PRODUCTY, I.E. THE LEAD OPERATOR OF E1 IS x*:
Eli = (N} EL11eE12.6.E1IN
THEN COEFFLEL(E2I=*%(N=1) El1l,sE1KeE1JoesE1INy
Kel=1,J=I+1
IF Fizg2
COEFFLELsE23 = 0 OTHERWISE
3, F1 IS A SuUMs I.,E. THE LEAD OPERATOR OF E1 IS +:
El = +{N),E11.E12,,.F1IN

THEN THE RESULT 1S THE SUM OF THE COEFFICIENTS IN THE INDIVI-
DUAL TERMS:

9=7

+(N) COEFFLEL1,E21.COEFFIEL2:,E27,, . COEFFLELINsE2]

965

9:5e1s

SIMPLIFICATIONS,

AUTOMATIC SIMPLIFICATION,

CONSTANTS:

ARITHMETIC OPERATIONS BETWEEN CONSTANTS ARE ALWAYS EVALUATED
PRODUCING A NEW CONSTANT WHOSE TYPE DEPENDS ON THE OPERATION AND
THE CONSTANTS OPERATED UPON AS FOLLOWS:

1 = INTEGER
R = RATIONAL
F = FLOATING POINT
ZERO IS ALWAYS TYPE I
RATIONAL CONSTANTS ARFE ALWAYS SIMPLIFIED
ADDITIONS
I+ 1 =1
I + R =>R
1 +F =>F UNLESS 1T IS ZERO
R+ R =>R UNLESS 1T SIMPLIFIES TO INTEGER
R+ F =>F UNLESS IT 1S ZERO
F ¢+ F =>F UNLESS IT 1S ZERO
MULTIPLICATION:
I = 1 => 1
I % R =>R UNLESS 17 SIMPLIFIES TO INTEGER
I % F =>F UNLESS 1T IS ZERO
R % R =» R - UN. ESS IT SIMPLIFIES TO INTEGER
R % F => F
F % F z> F

EXPONENTIALIZATION:
ZERQ IF BASE IS ZERO
INTEGER ONE IF BASE IS ONE
INTEGER ONE IF EXPONEMNT 1S ZERO
Iosx I =>» 1

I

el

&k

ok

¥ 3
* %

R

T

T3 e

=2

=>

=>

=>

R IF EXPONENT IS NEGATIVE

F

ERROR IF BASE IS NEGATIVE AND DENOMINATOR OF
EXPONENT IS EVEN

F

ERROR 1IF BASE IS NEGATIVE

R

£

ERROR IF BAGF 1S NEGATIVE AND DENOMINATOR OF

EXPONENT IS EVEN
R %% F => F
ERROR IF BASE 1S NEGATIVE
F 2% I => F
F xx R => F
ERROR IF BASE 1S NEGATIVE AND DENOMINATOR OF
EXPONENT IS EVEN
F %% F => F
ERROR IF BASE 1S NEGATIVE

NON=CONSTANTS:

ARITHMETIC OPERATIONS?
E = ARBITRARY EXPRESSION: C = CONSTANT

E1 *x E2) %% E3 => E1 %% (E2 % E3)
E %% E1) % (E ** E2) => E *x (E1 + E2)

0 + E => E

1 *x E => E 1.0 x E => E
0 #%x E => 0

1 %% E => 1 1.0 %% E => 1
E %% 0 => 1

£ %% 1 => E £ % 1,0 => E
C1 * E+Cc2xE=>(cCc1+C2) *xE
(

(

MATHEMATICAL FUNCTIONS?
EXPL LOGL E 11 => E
LOGL EXPL E 11 => E
LOGL E1 *x% E2 1 => E2 % LOGL E1 1

SINT =1 ¥ E 1 => =1 % SINL E 1]
INHE =1 * E 3 => =1 % TNHL E]
ATNL =1 * E 1 => =3 x ATNL E 1]
CoSt =1 * E 1 => CoSC E]
9e5620 OPTION CONTROLLED SIMPLIFICATION.

OPTION: EXPAND(K) OR FUNCTION: EXPAND
{(Ne K ARE POSITIVE INTEGERS)
E1 * (E2 + E3) => E1 *x E 2 + E1 * £E3
(F1 + E2) %x N => E1 *k N +
BINCNe1d % Eflkxk(N=1) * E2 +

BINCN,N=13 * Eif * E2#%(N-1) +

Fo %% N { IF K > N=1)
EXPL E1 + LOGL E2 3] => E2 % LOGL E1 1
EXPL F1 * LOGL E2 1311 => E2 %% E1
LOGE E1 % E2 1 => LO0Gf E1 1 + LOGL E2 3]

OPTIONS: BASE(K) WITH Kz 2 OR 10
C %% E => K %x (E * LOGLCI/LOGLKI) (IF C > 0

OPTION: BASE(E)

9=9

C %% E => EXP[L E = LOG[C] 1 CIFC >0

OR FUNCTION: PRODEX
¥ E3 => (E1 *x E3) % (E2 %% E3)

OPTION: PRODEX
(E1 x F2)

OPTION: MFCT
EXPL C1 1 => C2
LOGL C1 3 => C2
TNHL €1 1 => C2
SINL C1 1 => C2
CosSt €1 1 => ¢c2
ATNL C1] => C2

OPTION: INT (
FACL I 31 =>1 %
BINL I1,I2 1 =>
BINL Ev0 1 => 1
BINL Evl 3 => E
BINL EyE 3 => 1

(CL >0)

I IS NON=NEGATIVE INTEGER)

2*0.0*!

(I171) * ((11=1)/2) % see * ((I1=I2+1)/12
(I1 > I2-1)

STEPL C1+C2,C3 1 => 1 IF Ci=¢C C2 < C3 OR Ci=C2=C3

0 OTHERWISE

9=-10

10=1

. APPENDIX A

<

TABLE 1.
INTERNAL REPRESENTATION OF EXPRESSIONS,

sk ke st sk Sk R o s o e o s ok oK s R s o ok K o stk sk 3 sl s ok a8 s 3 o ok o e o o e o K o o e s 3 o sk o o o e ok ok o oK

#ITYPx% D1} % REPRESENTS %
s s sk e sk e o s ok oK sk s o 3 s o o oK sk ok 8 o o K e K s o o 3 o ok e o 8 o o sk o o o ok ok 3 o ook o sk ok s ook ok K ok oK
* [% INTEGER %« A SIGNED INTEGER AS CONSTANT *
B o 0 g 50 T 0 oy o e e 0 220 s T gy T g 0 e =D T s o e O o YD gz i e B s W g S 2 s s e N g D (2 € D S e D D e €59 G U0 g B e B
* i1 % TNTEGER %« A SIGNED INTEGER AS THE NUMERAT.*
* # * OF A RATIONAL CONSTANT, *
K oo o 2 B g s 650 3 00 20 29 O g S o o om o an T2 oo o D T s S D e w0 0 9 e e T e @m o 0B © @o @ g B D 6D S ey D o T G D i P &
* 2 ¥ POSITIVE INTEGER * A POSITiVE NON=ZERO INTEGER AS X
® * * THE DENOMINATOR OF A RATIONAL *
* * * CONSTANT, *
* * % NUMERATOR AND DENOMINATOR ARE *
* * * ALWAYS APPEARING CONSECUTIVELY. *
W o i e 2 K 2 gy i e 0 22 0 20 g T o e 2 B gy s > e B B e e o B e e T e s D G B D P g € T D D Y o > s e oze W o T G ¥
%« 3 % FLOATING=POINT NUMBFR * A REAL CONSTANT- *
m--omlk ————————— —'ﬂmnn-—"‘ne_u-—@--w--B--lnu—ﬂ--o—--——----—ﬂ————-—-———‘-*
5 % POSITIVE INTEGER=T * 1°'TH ARGUMENT OF A FUNCTION *
* * * DEFINED BY AN EXPRESSION, *
K e o o 5 i 42 a0 5 s e g g B ey o i 0 Dy o B e W e 0 > - o O an E em D ey 6 @ BB an @O - - D o s CD Gy O @ D e S *
k6 X ﬂLPHANUAERiC NAME % NON—SUBSCRIPTED VARIABLE WHOSE x
* * * VALUE IS ITS NAME, D(I). *
B e om0 B, e G T g T ey e e 5 0 O e, 0 2 > O W o o o o 2 T e 0 @D D gmp B0 > WD g - 0 G D g T ez B g 0D > D a0 T e K
* 7 % ALPH@NUMERIC NAMF * SUBSCRIPTED VARIABLE WHOSE VALUEx
S * * IS ITS NAME, D(I)s WITH ITS *
* * * SUBSCRIPTS DEFINED IN THE NEXT *
% * * TERM, *
*_,-gum!%i aaaaaaaaaaa s e e o g T ey e o oes U ws *'--e—mnm-a-.e- uuuuuuuuuuuu D D R e D G T WD D o D e *
% 8 % INTEGER IN FIELD 0=8 % SURSCRIPT WORD WITH 1 SUBSCRIPT *
* * FIELD 9&35 =z 0 * 3
ﬁ(w&ﬂm@* mmmmmmmmmmmmmm mmﬁ’mﬁa’ﬂ* mmmmmmmmmmmmmmmmmmmmmm R e R R WD B > T gy *
* 9 % INTEGER FIELDS 0-8 * SUBSCQTPT WORD WITH 2 SUBSCRIPTSx®
* * AND 9=17, * #
* * FIELD 18=26 = 0 * *
K e o @2 Iy 20 o e 0 s D g S i 20 5 08 0 e 2 05 e O B s o o e e OB e e D W g = e O o D G R O D gy D i > D G > O %
* 10 #* INTEGER FEELDS 0=8, * SUBSCRIPT WORD WITH 3 SUBSCRIPTSx
* * 9=17 AND 18- 266 * #
% * FIELD 27-35 = 0 # *
Y v o e K 2 o e e s T o i 2 9 S, e o e S o o e o P s e O B s e O e G W e s T S W 8 U s @ o g

i0=2

TABLE I. (CONTINUED)

—:_—au’ mmmmmmmmmmmm gnﬂm@-uu—am&*“nmam mmmmmmmmmmmmm - e Y g D e D O P (R 4

% 11 * INTEGER FIELDS 0-8, % SUBSCRIPT WORD WITH 4 SUBSCRIPTS*

* * 9=17y 18=2¢ AND 27=35 x *
* * % GUBSCRIPTED VARIABLE IS ALWAYS *
* * * FOLLOWED BY A SUBSCRIPT WORD, *
W s e 00 D g, o 2 £ D e T 9 O 5 T g i o g O g B g 0 s e g Y s Y i 0 e S g D D D D D P D D D s O s 5 K
% 16 * POSITIVE INTEGER * A COMMA (s)s WHERE H1i IS THE *
* * Hi = FIELD 0-17 %* NUMBER OF FOLLOWING EXPRESSIONS.x
* * H2 = FIELD 18-35 * H2=0 IF THE EXPRESSIONS ARE IN *
* * % THE CORE, *
* * * H2=INDEX IF THE EXPRESSIONS ARE *
* * X ON DRUM, *
W e w0 0 1 D oy 0 i B B T gy T o I S T w0 w0 O gz T O 8 o g, O G S D s 6D S gy T O D B e = D @e 2 n E en W - ¥
% 17 *x NOT USED % REPRESENTS (¢ IT IS USED ONLY %
* * * DURING TRANSLATION FROM INFIX *
* * * TO PREFIX %
o o o 0 T 0 g, 5 o a9 2 0 s T gy T o i 0 ST g Ty o s s S g W 6 g 0 a0 o e B e 02 > B g G 2 D OB D G can B o B e e g > o @ >
x 18 * POSITIVE INTEGER « ADD (+) OPERATOR WHERE D(I) IS *
* * GREATER THAN 1 * THE NUMBER OF FOLLOWING SuUB- %
* * * EXPRESSIONS TO BE ADDFD. *
B s s o > H OB o, o o g5 T oy T o, i o> 6 gy B = s e wn D g W OB g @B an o» > o T o O ey D iy D e € D D e D iy D e D o I @ T ez %
* 19 % POSITIVE INTEGER * MULTIPLY (%) OPERATOR WHERE D(I)x
* * GREATER THAN 1 * IS5 THE NUMBER OF FOLLOWING SUB= x
* * * EXPRESSXONS T0 BE MULTIPLIED, *
B ey v o 9 H G oy e e e T g T ey € e W ez L S e o op oD 5 e am D an > TP o G5 @6 D e S G on @D @ o D i B > D G D > T o 4
x 19 % =2 « DIVISION sy USED ONLY DURING #
* * % TRANSLATION FROM INFIX TO PREFIXx
W e a5 B g 2 o P om0 @ O, G e B i D i w0 B e K s D e B 6 2 Sy D 9 D e D G D B D gy S iy e O g O e O > M
x 20 * 2 % EXPONENTIALIZATION SUCH THAT THE*
* * * FOLLOWING TWO SUB-EXPRESSIONS *
* * : % REPRESENT THE BASE AND EXPONENTe%
* * & RESPECTIVELY. *
H em o me o I 0 iy 052 0 5 e e O e O e 2 e w0 v o e 2 e S i e e 5 o e O e 0 I T D e @ B ey > - o e wn = w ¥

TABLE 1. (CONTINUED)

* 21 * INTEGER FIELDS

*

¥ o W W O K M I M KK X W W N W K OE KX K W R ¥ WKW N E R

&

LN N R . N I N R B R N AR IR. AR N IR B

0-17 AND 18-=35

1
§
§
8
§
8
8
8
§
§
§
§
[
8
§
¢
B
{
|
[
i
§
8

LR B B R A R R R A B R A R R

324128
334128
344128
35+128
36+128
37+128
504128
514256
52+384

THE FOLLOWING IDENTIFIER INTEG.
APPEAR ONLY DURING TRANSLATION:
(EXCEPT THE ®# ONES)

64+128
65+128
664256
67+128
68+128
694128
704128
Ti+128
T724+640
TE34+640
75+128
F6+128
T7+128
78+256
794256
80+128
8i1+128

MATHFMATICAL FUNCTIONS WHERE
FIELDS 18-35 REPRESENTS THE
NUMBER OF FOLLOWING SUB=EXPR.

AS ARGUMENTS AND FIELD 0=-17 IS
AN IDENTIFIER INTEGER AS FOLLOWS

10=3

*

EXP
LOG
TNH
SIN
Ccos
ATN
FAC
BIN
STEP

EXPAND
CODEM
COEFF
NUM
DENOM
EXPON
BASE
ARG
SUBST
REPLAC
PRODEX
FLOAT
FLOATB
FIX
FIXE
LDoP
NARG

TR
LR K BE X NE B K B . AR A 2R R B 2R SR R BE BE 3F R EE R BRI 3 IR B B . 3K K 2R

10=4

TABLE I. (CONTINUED)

W o o @0 D o, a0 am g o e T g T o D o T D B ey e o s O e = B o B e T e T D D B o T T o B @ P ez D e %
x 22 x FIELD 0-17¢ * DEFINED FUNCTION, USED ONLY *
* * EXPRESSION POINTER * DURING TRANSLATION FROM INFIX *
* * FIELD 18-35: * TO PREFIX *
* * NUMBER OF ARGUMENTS * *
A a0 T B g 02 0 D 2 2 T B i W G 2 B iy 29 R T D W o 20 o o 0 2 T o > 0 B e S > TP e T e D D g B “ mn @ aw ws e S o b
* 23 % 2 * DIFFERENTIATION OF A FUNCTIONAL =
* * * EXPRESSION BY A VARIABLE, IT IS x
* * * FOLLOWED BY A SUBSCRIPTED OR %
* * * NONSUBSCRIPTED VARIABLE AND BY %
* * % AN UNDEFINED FUNCTION OR OTHER
* * * DIFFERENTIAL OPERATOR, *
H o e gy, 2 0 e 0 T T 9 i S O oy 0 e D 2 B gy B > B e D e B i D > B 0 > B - D w @ D T - ¥
*¥25= *x ALPHANUMERIC NAME * AN UNDEFINED FUNCTION WHOSE NAMEx
x 31% * IS D(I)e IT IS FOLLOWED BY %
* * * ITYP(I)=24 SUB-EXPRESSIONS AS *
* * * ITS ARGUMENTS *

3 5 ok ok ok o s ok 2 o 3K ofe s S ke e e ook ok 3K o s o s 3 ol s o s ol o s sk sk st o e sfod o ok ok K sk ok Ok KR R sk e ok ok ok KOk K

